APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (1): 175-186    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
地-井瞬变电磁多分量响应数值分析
孟庆鑫1,2,胡祥云1,潘和平1,周峰1
1. 中国地质大学(武汉)地球物理与空间信息学院,武汉 430074
2. 河北地质大学勘查技术与工程学院,石家庄 050031
10.1007/s11770-017-0600-6
Meng Qing-Xin1,2, Hu Xiang-Yun1, Pan He-Ping1, and Zhou Feng1
1. Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan 430074, China.
2. College of Exploration Technology and Engineering, Hebei GEO University, Shijiazhuang 050031, China.
 全文: PDF (1377 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文对地-井瞬变电磁法多分量响应进行计算分析。规则局部体瞬变场响应的计算方法与解释模型对于实际导电围岩模型的适用性较差,针对该问题,本文提出了一种基于地下瞬态电磁场数值模拟的计算分析方法。瞬变电磁场模拟方面,本文以时域有限差分法实现正演模拟,引入采用Gaver-Stehfest逆拉氏变换与Prony法的离散镜像法求解初始电磁场,应用透射边界条件保证迭代计算精度。通过均质半空间模型算例,证明该套方法可行。响应分析方面,设定含井旁目标体和导电围岩的地电模型,以上述方法对地下瞬态电场进行正演,以多分量观测装置为例换算感应电动势。通过对比各条件下瞬态电场与多分量响应,得出结论:地-井瞬变电磁多分量感应电动势响应反映了地下瞬态电场沿水平、垂直方向的梯度变化;响应特征取决于地层中瞬变场在不同条件下的“扩散、衰减、畸变”过程和观测位置的电磁场状态。本文的计算分析方法兼顾围岩背景场与局部体异常场,较之传统局部体瞬变场原理能够更全面的反映地质信息。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地-井瞬变电磁法   多分量响应分析   瞬态电场   三维时域有限差分   离散镜像法     
Abstract: We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
Key wordsSurface-hole transient electromagnetic method   multicomponent response analysis   transient electric field   three-dimensional finite-difference time-domain method   discrete image method   
收稿日期: 2016-06-24;
基金资助:

本研究由国家自然科学基金项目(编号:41304082)、中国博士后科学基金面上资助项目(编号:2016M590731)、河北省自然科学基金项目(编号:D2014403011)、河北省高等学校青年拔尖人才计划项目(编号:BJ2016046)和中国地质调查局地质大调查项目(编号:1212011121197)联合资助。

引用本文:   
. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
. 10.1007/s11770-017-0600-6[J]. APPLIED GEOPHYSICS, 2017, 14(1): 175-186.
 
[1] Adhidjaja, J. I., and Hohmann, G. W., 1989, A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body: Geophysical Journal International, 98(2), 233−242.
[2] Annetts, D., 2012, Inversion of surface and downhole electromagnetic data for a 3D earth: 22nd ASEG Geophysical Conference, Extended Abstracts, 1−3.
[3] Buselli, G., and Lee, S. K., 1996, Modelling of drill-hole TEM responses from multiple targets covered by a conductive overburden: Exploration Geophysics, 27(3), 141−153.
[4] Dyck, A. V., 1984, The role of simple computer models in interpretation of wide-band, drill-hole electromagnetic surveys in mineral exploration: Geophysics, 49(7), 957−980.
[5] Dyck, A. V., 1991, Drill-Hole Electromagnetic Methods, in Nabighian, M. N., Electromagnetic Methods in Applied Geophysics: Society of Exploration Geophysicists, 881−930.
[6] Ge, Y. H., and Esselle, K. P., 2002, New closed-form Green’s functions for microstrip structure Theory and results: IEEE Transactions on Microwave Theory and Techniques, 50(6), 1556−1560.
[7] Guo, J. L., Zeng, Y. Q., and Li, X., 2015, Numerical simulation analysis of surface-to-borehole TEM based on the finite difference method: International Workshop and Gravity, Electrical & Magnetic Methods and their Applications, 115−118.
[8] Guptasarma, D., and Singh, B., 1997, New digital linear filters for Hankel J(0) and J(1) transforms: Geophysical Prospecting, 45(5), 745−762.
[9] Jeffrey, A., and Zwillinger, D., 2007, Table of integrals, series, and products: Academic press, New York.
[10] Jiang, B. Y., 1998, Applied Near Zone Magnetic Source Transient Electromagnetic Exploration: Geological Publishing House, Beijing.
[11] Johnson, D., Furse, C., and Tripp, A. C., 1998, FDTD modeling of the borehole EM response of a Conductive Ore deposit in a Lossy Dielectric: 68th Annual International Meeting, SEG, Expanded Abstracts, 794−796.
[12] Li, J. H., Liu, S. C., Jiao, X. F., et al., 2015, Three-dimensional forward modeling for surface-borehole transient electromagnetic method: Oil geophysical prospecting, 50(3), 556−564.
[13] Li, X., 2002, The Theory and Application of Transient Electromagnetic Sounding: Shanxi Science Technology Press, Xi’an.
[14] Liao, Z. P., 2001, Transmitting boundary and radiation conditions at infinity: China Science E, 2001, 31(3), 254−262.
[15] Liu, G. M., and Asten, M. W., 1993, Fast approximate solutions of transient EM response to a target buried beneath a conductive overburden: Geophysics, 58(6), 810−817.
[16] McNeill, J. D., 1980, Applications of transient electromagnetic techniques: Technical Note TN-, Geonics Limited, Toronto.
[17] McNeill, J. D., 1982, Interpretation of large-loop transmitter transient electromagnetic surveys: SEG Technical Program Expanded Abstracts 1982, 373−374.
[18] Oristaglio, M. D., 1982, Diffusion of electromagnetic fields into the earth from a line source of current: Geophysics, 47(11), 1585−1592.
[19] Qian, W., West, G., Hughes, N., and Ravenhurst, W., 2002, EM modeling of a plate conductor revisited: 72th Annual International Meeting, SEG, Expanded Abstracts, 1097−1100.
[20] Shao, Z. H., Hong, W., and Zhou, J. Y., 2000, The unified theories on transmitting boundary conditions: China Science E, 30(1), 64-69.
[21] Swidinsky, A., and Nabighian, M., 2015, On smoke rings produced by a loop buried in a conductive half-space: Geophysics, 80(4), E225−E236.
[22] Walker, P. W., and West, G. F., 1991, A robust integral equation solution for electromagnetic scattering by a thin plate in conductive media: Geophysics, 56(8), 1140−1152.
[23] West, R. C., and Ward, S. H., 1998, The borehole transient EM of the three-dimensional fractured zone in a conductive half space: Geophysics, 53(11), 1469−1487.
[24] Yuan, M. T., and Sarkar, T. K., 2006, A direct discrete complex image method from the closed-form Green’s functions in multilayered media: IEEE Transactions on Microwave Theory and Techniques, 54(3), 1025−1032.
[25] Zhdanov, M. S., 2009, Geophysical Electromagnetic Theory and Methods: Elsevier Science and Technology, Oxford.
[1] 孟庆鑫, 潘和平, 骆淼. 关于求解地层介质中瞬变电磁场的离散镜像方法研究[J]. 应用地球物理, 2015, 12(4): 493-502.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司