APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 561-569    DOI: 10.1007/s11770-016-0567-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于CHAMP卫星的区域卫星磁异常球冠谐分析
冯彦1,2,蒋勇1,姜乙1,刘宝嘉1,蒋谨1,刘中微1,叶美晨1,王弘晟1,李秀明1
1. 南京信息工程大学数学与统计学院,南京 210044
2. 中国科学院空间天气国家重点实验室,北京 100080
Spherical cap harmonic analysis of regional magnetic anomalies based on CHAMP satellite data
Feng Yan1,2, Jiang Yong1, Jiang Yi1, Liu Bao-Jia1, Jiang Jin1, Liu Zhong-Wei1, Ye Mei-Chen1, Wang Hong-Shen1, and Li Xiu-Ming1
1. The College of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
2. Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100080, China.
 全文: PDF (1029 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于CHAMP卫星的矢量磁测数据,结合最新的IGRF12模型,并假设所有CHAMP卫星的网格测点位于同一高度(307.69km),基于498个测点,建立了2010.0年中国地区要素X、Y、Z和总强度F的卫星磁异常球冠谐(SCH2010)模型,建模前利用CM4模型移除了外源场。模型极点位于36°N和104°E,球冠半角为30°。通过比较?X、?Y、?Z以及X、Y、Z的均方偏差(RMS)的数值变化,确定截断阶数Kmax = 9为合适的截断阶数。结合IGRF12所建立的卫星高度的中国地磁参考场(CGRF2010)模型与CM4模型具有较好的一致性,分析比较了基于SCH2010模型与类似磁异常模型的地面磁异常分布,发现各要素磁异常的强度与分布高度一致。通过比较F在不同高度处的磁场分布,发现SCH2010模型在不同高度的估算都符合地磁场的变化规律。比较发现SCH2010与CM4模型的空间变化率一致性较好。所建模型相较于其它区域拟合模型而言,可反映地磁场的更多细节,但球冠谐模型本身及建模过程为两个误差源。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地磁模型   CHAMP卫星   球冠谐模型   CM4   IGRF12     
Abstract: We used CHAMP satellite vector data and the latest IGRF12 model to investigate the regional magnetic anomalies over mainland China. We assumed satellite points on the same surface (307.69 km) and constructed a spherical cap harmonic model of the satellite magnetic anomalies for elements X, Y, Z, and F over Chinese mainland for 2010.0 (SCH2010) based on selected 498 points. We removed the external field by using the CM4 model. The pole of the spherical cap is 36N° and 104°E, and its half-angle is 30°. After checking and comparing the root mean square (RMS) error of ?X, ?Y, and ?Z and X, Y, and Z, we established the truncation level at Kmax = 9. The results suggest that the created China Geomagnetic Referenced Field at the satellite level (CGRF2010) is consistent with the CM4 model. We compared the SCH2010 with other models and found that the intensities and distributions are consistent. In view of the variation of F at different altitudes, the SCH2010 model results obey the basics of the geomagnetic field. Moreover, the change rate of X, Y, and Z for SCH2010 and CM4 are consistent. The proposed model can successfully reproduce the geomagnetic data, as other data-fitting models, but the inherent sources of error have to be considered as well.
Key wordsGeomagnetic model   CHAMP satellite   spherical cap harmonic model   CM4   IGRF12   
收稿日期: 2016-03-20;
基金资助:

本研究由国家自然科学基金(编号:41404053)、公益性行业(气象)科研专项(编号:GYHY201306073)、江苏省高校自然科学研究基金(编号:14KJB170012)和南京信息工程大学大学生创新创业训练计划项目(编号:201510300178)联合资助。

引用本文:   
. 基于CHAMP卫星的区域卫星磁异常球冠谐分析[J]. 应用地球物理, 2016, 13(3): 561-569.
. Spherical cap harmonic analysis of regional magnetic anomalies based on CHAMP satellite data[J]. APPLIED GEOPHYSICS, 2016, 13(3): 561-569.
 
[1] Alldredge, L. R., 1981, Regional harmonic analyses applied to the geomagnetic field: J. Geophys. Res., 86(B4), 3021−3026.
[2] An, Z. C., 2000, Studies on geomagnetic field models of Qinghai-Xizang plateau: Chinese J. Geophys., 43(3), 339−345.
[3] An, Z. C., 2001, Analyses and discussions of the geomagnetic field polynomial models: Chinese J, Geophys., 27(6), 511−522.
[4] An, Z. C., 2003, Spherical cap harmonic model of the Chinese geomagnetic reference field for 1936: Chinese J. Geophys., 46(5), 624−627.
[5] An, Z. C., Rotanova, N. M., Odintsov, S. D., et al., 1998, Spherical cap harmonic models of MAGSAT magnetic anomalies over Europe and its adjacent region: Chinese J. Geophys., 41(4), 468−474.
[6] An, Z. C., and Tan, D. H., 1998, Spherical cap harmonic analysis of MAGSAT magnetic anomalies over Asia: Chinese J. Geophys., 41(2), 168−173.
[7] An, Z. C., and Xu, Y. F., 1981, Methods of computation of geomagnetic field at greater altitude in a local region: Chin. J. Space Sci., 1(1), 68−73.
[8] Chen, B., Gu, Z. W., Gao, J. T., et al., 2011, Analyses of geomagnetic field and its secular variation over China for 2005.0 epoch using spherical cap harmonic method: Chinese J. Geophys., 54(3), 771−779.
[9] Feng, Y., Sun, H., Jiang, Y., 2015, Data fitting and modeling of regional geomagnetic field: Applied Geophysics, 12(3), 303−316.
[10] Flechtner, F. M., Gruber, T., Guntner, A., et al., 2010, System earth via geodetic-geophysical space techniques: Springer-Verlag, Berlin.
[11] Haines, G. V., 1985, Spherical cap harmonic analysis: J. Geophys. Res., 90(B3), 2583−2591.
[12] Hemant, K., and Maus, S., 2003, A comparison of global lithospheric models derived from satellite. In: First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies: Springer-Verlag, Berlin.
[13] Mandea, M., and Purucker, M., 2005, Observing, modeling, and interpreting magnetic fields of the solid earth: Surveys in Geophysics, 26(4), 415−459.
[14] Maus, S., 2010, An ellipsoidal harmonic representation of Earth’s lithospheric magnetic field to degree and order 720: Geochem. Geophys. Geosyst., 11(6), Q06015.
[15] Maus, S., Rother, M., Hemant, K., et al., 2006, Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements: Geophys. J. Int., 164, 319-330.
[16] Maus, S., Rother, M., and Holme, R., et al., 2002, First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field: Geophys. Res. Lett., 29(14), 47−1.
[17] Maus, S., Yin, F., Luhr, H., et al., 2008, Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements: Geochem. Geophys. Geosyst., 9(7), Q07021.
[18] Olsen, N., Luhr, H., Finlay, C. C., et al., 2014, The CHAOS-4 geomagnetic field model: Geophys. J. Int., 197, 815−827.
[19] Olsen, N., Mandea, M., Sabaka, T. J., et al., 2010, The CHAOS-3 geomagnetic field model and candidates for IGRF-2010: Earth, Planets and Space, 62, 719−727.
[20] Ou, J. M., Du, A. M., Thébault, E., et al., 2013, A high resolution lithospheric magnetic field model over China: Science China: Earth Sciences, 56, 1759−1768.
[21] Sabaka, T. J., Olsen, N., Purucker, M. E., et al., 2004, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data: Geophys. J. Int., 159, 521−547.
[22] Sabaka, T. J., Olsen, N., Tyler, R. H., et al., 2015, CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Oersted, SAC-C and observatory data: Geophys. J. Int., 200, 1596−1626.
[23] Thébault, E., Schott, J. J., and Mandea, M., 2006, Revised spherical cap harmonic analysis (R-SCHA): Validation and properties: J. Geophys. Res., 111(B1), 279−288.
[24] Thébault, E., Schott, J. J., Mandea, M., et al., 2004, A new proposal for spherical cap harmonic modeling: Geophys. J. Int., 159, 83−103.
[1] 冯彦, 蒋勇, 姜乙, 李正, 蒋瑾, 刘中微, 叶美晨, 王弘晟, 李秀明. 基于三维Taylor多项式和曲面Spline模型的区域磁异常场研究[J]. 应用地球物理, 2016, 13(1): 59-68.
[2] 冯彦, 孙涵, 蒋勇. 基于数据拟合的区域地磁场建模研究[J]. 应用地球物理, 2015, 12(3): 303-316.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司