APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 459-468    DOI: 10.1007/s11770-016-0578-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
盐膏岩组分与岩石速度关系模版研究——以阿姆河盆地盐膏岩为例
郭同翠1,王红军1,穆龙新1,张兴阳1,马智2,田雨1,李昊宸3
1. 中国石油勘探开发研究院,北京 100083
2. 中国石油海外勘探开发公司,北京100034
3. 中国石油华油集团公司,北京 100724
A graphical model for haloanhydrite components and P-wave velocity: A case study of halo-anhydrites in Amu Darya Basin
Guo Tong-Cui1, Wang Hong-Jun1, Mu Long-Xin1, Zhang Xing-Yang1, Ma Zhi2, Tian Yu1, and Li Hao-Chen3
1. Research Institute of Petroleum Exploration and development, Beijing 100083, China.
2. PetroChina International Corporation, Beijing 100034, China.
3. China Huayou (Group) Corporation, Beijing 100724, China.
 全文: PDF (2307 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对不同矿物组分含量对盐膏岩速度影响大,盐膏岩速度复杂难题。本文把岩石物理模版的研究方法引入到盐膏岩的速度研究中,首次建立了盐膏岩四元组分(膏、盐、泥、孔隙地层水)含量与岩石速度关系的模版,在分析盐膏岩组分矿物骨架速度的基础上。基于多矿物测井解释模型,并以纵波模量比与孔隙度趋势作为约束条件,以组分含量为横坐标,岩石速度为纵坐标。在把不同尺度孔隙度值时,泥质、膏、盐矿物含量发生变化时,获得相应盐膏岩速度的变化值放在同一坐标系中,构成了盐膏岩四元矿物组分与岩石速度关系模版。并应用实测岩芯数据和测井数据,验证了该模版的可靠性和适应性,利用该模板能识别盐膏岩中关键结构和重要矿物的变化趋势,能直观的评估盐膏岩矿物组分变化对岩石速度的影响。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词盐岩   膏岩   图形模型   P 波速度   阿姆河盆地     
Abstract: Wave velocities in haloanhydrites are difficult to determine and significantly depend on the mineralogy. We used petrophysical parameters to study the wave velocity in haloanhydrites in the Amur Darya Basin and constructed a template of the relation between haloanhydrite mineralogy (anhydrite, salt, mudstone, and pore water) and wave velocities. We used the relation between the P-wave moduli ratio and porosity as constraint and constructed a graphical model (petrophysical template) for the relation between wave velocity, mineral content and porosity. We tested the graphical model using rock core and well logging data.
Key wordsSalt   anhydrite   graphical model   P-wave velocity   Amu Darya Basin   
收稿日期: 2016-07-02;
基金资助:

本研究由国家重大科技专项(编号:2011ZX05029-003)及中国石油勘探开发研究院项目(编号:2012Y-058)联合资助。

引用本文:   
. 盐膏岩组分与岩石速度关系模版研究——以阿姆河盆地盐膏岩为例[J]. 应用地球物理, 2016, 13(3): 459-468.
. A graphical model for haloanhydrite components and P-wave velocity: A case study of halo-anhydrites in Amu Darya Basin[J]. APPLIED GEOPHYSICS, 2016, 13(3): 459-468.
 
[1] Biot, M. A., 1951a, Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range: Acoust. Soc. Am., 28, 168−178.
[2] Biot, M. A., 1951b, Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range: Acoust. Soc. Am., 28, 179−191.
[3] Clavier, C., 1977, The theoretical and experimental bases for the “Dual water” model for the interpretation of shaly sands: SPE6859, 1−6.
[4] Crues, J. R., 1977, Lithology crossplots: Applications in an evaporate Basin- the Maverick basin of south west Texs: SPWLA eighteenth Annual Logging Symposium, 1−20.
[5] Gassman, F., 1951, Elastic waves through a packing of spheres: Geophysics, 16(4), 673−685.
[6] Han, D., and Batzle, M. L., 2004, Gassmann’s equation and fluid-saturation effects on seismic velocities: Geophysics, 69(1), 398−405.
[7] Mavko, G., and Mukerji, T., 1995, Pore space compressibility and Gassmann’s relation: Geophysics, 60(6), 1743−1749.
[8] Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The rock physics handbook: Tools for seismic analysis in porous media: Cambridge University Press, New York, 70−130.
[9] Nolen-Hoeksema, R. C., 2000, Modulus porosity relations, Gassmann’s equation, and the low frequency elastic wave response to fluids: Geophysics, 65(5), 1355−1363.
[10] Ruiz, F., and Dvorkin, J., 2009, Sediment with porous grains: rock-physics model and application to marine carbonate and opal: Geophysics, 74(1), 1−15.
[11] Sams, M. S., and Andrea, M., 2001, The effect of clay distribution on the elastic properties of sandstones: Geophysical Prospecting, 49(3), 128−150.
[12] Schoenherr, J.,Yrai, J. L., and Kukla, P. A., 2007, Limits to the sealing capacity of rock salt: A case study of the Infra-cambrian Ara salt from the South Oman Salt Basin: AAPG Bulletin, 91(11), 1541−1557.
[13] Tapan, M., and Gary, M., 2005, Quantitative Seismic Interpretation: Cambridge University Press, Per Avseth, 72−80.
[14] Vercellino, W. C., 1976, Computer crossplots for well evaluation of complex lithologies: Dresser Atlass Tech. Memor., 7(2), 1−30.
[15] Vialle, S., and Vanorio, T., 2011, Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2-saturated water: Geophysical Research Letters, 38(1), L01302, 1−5.
[16] Xu, S. Y., and White, R. E., 1995, A new velocity model for clay-sand mixture: Geophysics Prospecting, 43, 91−118.
[1] 田雨,徐洪,张兴阳,王红军,郭同翠,张良杰,龚幸林. 基于图论多分辨率聚类分析的测井岩相识别研究——以阿姆河盆地台内滩气田为例[J]. 应用地球物理, 2016, 13(4): 598-607.
[2] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[3] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[4] 李雄炎, 秦瑞宝, 刘春成, 毛志强. 基于岩石导电效率建立碳酸盐岩储层饱和度的计算方法[J]. 应用地球物理, 2014, 11(2): 215-222.
[5] 郭玉倩, 马宏达, 石开波, 曹宏, 黄录忠, 姚逢昌, 胡天跃. 多孔颗粒上界限模型及其在塔里木碳酸盐岩中的应用[J]. 应用地球物理, 2013, 10(4): 411-422.
[6] 李景叶, 陈小宏. 地震尺度下碳酸盐岩储层的岩石物理建模方法[J]. 应用地球物理, 2013, 10(1): 1-13.
[7] 刘灵, 耿建华, 郭彤楼. 横波速度预测的边界加权平均法[J]. 应用地球物理, 2012, 9(4): 421-428.
[8] 聂建新, 巴晶, 杨顶辉, 晏信飞, 袁振宇, 乔海鹏. 基于Kelvin-Voigt黏弹性骨架的含非饱和流体孔隙介质BISQ模型[J]. 应用地球物理, 2012, 9(2): 213-222.
[9] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
[10] 李宁, 武宏亮, 冯庆付, 王克文, 石玉江, 李庆峰, 罗兴平. 火山岩、白云岩储层基质孔隙度评价方法及应用效果分析[J]. 应用地球物理, 2009, 6(3): 287-298.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司