APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 449-458    DOI: 10.1007/s11770-016-0569-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于结构属性排序的稳定的盐丘探测
Mohamed Deriche
Center for Energy and Geo-Processing (CeGP) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia
Robust salt-dome detection using the ranking of texture-based attributes
Mohamed Deriche
Center for Energy and Geo-Processing (CeGP) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia
 全文: PDF (348 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震数据的精确解释和分析非常依赖于所使用算法的稳定性。我们着重于盐丘地震勘探的稳定检测。我们讨论一个基于地震成像中最佳结构特征属性排序分类的盐丘探测新模型。该算法克服了现有的基于结构属性技术的局限性,因为该技术非常依赖于盐丘固有的地质属性与盐丘检测所用的属性数量。该算法综合了灰度共生矩阵(GLCM)属性,Gabor滤波器,以及含有使用属性特征排序信息协方差矩阵的本征结构等属性。将排序前列的属性组合起来形成一组最优的特征集,以保证算法即使在沿盐丘边界没有强反射层的情况下也能有效。与现有的盐丘检测技术相比,本文的算法稳定和计算高效,并能处理小尺度特征集。我用荷兰F3地块评价该算法的性能。实验结果表明,本文提出的基于信息理论的工作流程用于检测盐丘, 其精度优于现有盐丘检测技术。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地震解释   盐丘检测   结构特征   灰度共生矩阵     
Abstract: The accurate interpretation and analysis of seismic data heavily depends on the robustness of the algorithms used. We focus on the robust detection of salt domes from seismic surveys. We discuss a novel feature-ranking classification model for salt-dome detection for seismic images using an optimal set of texture attributes. The proposed algorithm overcomes the limitations of existing texture attribute-based techniques, which heavily depend on the relevance of the attributes to the geological nature of salt domes and the number of attributes used for accurate detection. The algorithm combines the attributes from the Gray-Level Co-occurrence Matrix (GLCM), the Gabor filters, and the eigenstructure of the covariance matrix with feature ranking using the information content. The top-ranked attributes are combined to form the optimal feature set, which ensures that the algorithm works well even in the absence of strong reflectors along the salt-dome boundaries. Contrary to existing salt-dome detection techniques, the proposed algorithm is robust and computationally efficient, and works with small-sized feature sets. I used the Netherlands F3 block to evaluate the performance of the proposed algorithm. The experimental results suggest that the proposed workflow based on information theory can detect salt domes with accuracy superior to existing salt-dome detection techniques.
Key wordsSeismic interpretation   salt-dome detection   texture attributes   GLCM   
收稿日期: 2016-05-13;
引用本文:   
. 基于结构属性排序的稳定的盐丘探测[J]. 应用地球物理, 2016, 13(3): 449-458.
. Robust salt-dome detection using the ranking of texture-based attributes[J]. APPLIED GEOPHYSICS, 2016, 13(3): 449-458.
 
[1] Amin, A., and Deriche, M., 2015a, A new approach for salt dome detection using a 3d multidirectional edge detector: Applied Geophysics, 12(3), 334-342.
[2] Amin, A., and Deriche, M., 2015b, A hybrid approach for salt dome detection in 2d and 3d seismic data: IEEE International Conference on Image Processing (ICIP), 2537-2541.
[3] Amin, A., Deriche, M., Hegazy, T., Wang, Z., and AlRegib, G., 2015, A novel approach for salt dome detection using a dictionary-based classifier: 85th SEG Annual International Meeting, Expanded Abstracts, 1816-1820.
[4] Amin, A., and Deriche, M., 2016, Salt dome detection using a codebook-based learning model: IEEE Geoscience and Remote Sensing Letters, PP(99), 1-5.
[5] Aqrawi, A. A., Boe, T. H., and Barros, S., 2011, Detecting salt domes using a dip guided 3d sobel seismic attribute: 81th SEG Annual International Meeting, Expanded Abstracts 2011, 1014−1018.
[6] Battiti, R., 1994, Using mutual information for selecting features in supervised neural net learning: IEEE Transactions on Neural Networks, 5(4), 537-550.
[7] Berthelot, A., Solberg, A. H. S., and Gelius, L. J., 2013, Texture attributes for detection of salt: Journal of Applied Geophysics, 88, 52-69.
[8] Berthelot, A., Solberg, A. H. S., Morisbak, E., and Gelius, L. J., 2012, 3d segmentation of salt using texture attributes: 82th SEG Annual International Meeting, Expanded Abstracts, 1-5.
[9] Brown, G., Pocock, A., Zhao, M. J., and Luján, M., 2012, Conditional likelihood maximisation: a unifying framework for information theoretic feature selection: J. Mach. Learn. Res., 13, 27−66.
[10] Chopra, S., and Marfurt, K. J., 2005, Seismic attributes—A historical perspective: Geophysics, 70(5), 3SO−28SO.
[11] Forrest, M., 2000, “Bright” investments paid off: AAPG Explorer., 18−21.
[12] Gao, D., 2003, Volume texture extraction for 3D seismic visualization and interpretation: Geophysics, 68, 1294-1302.
[13] Haralick, R. M., Shanmugam, K. S., and Dinstein, I., 1973, Textural features for image classification: IEEE Transactions on Systems, Man, and Cybernetics, 3, 610-621.
[14] Haukås, J., Ravndal, O. R., Fotland, B. H., Bounaim, A., and Sonneland, L., 2013, Automated salt body extraction from seismic data using the level set method: First Break, 31, 35-42.
[15] Lisle, R. J., 1994, Detection of zones of abnormal strains in structures using Gaussian curvature analysis: AAPG bulletin, 78(12), 1811−1819.
[16] Lomask, J., Biondi, B., and Shragge, J., 2004, Image segmentation for tracking salt boundaries: 74th SEG Annual International Meeting, Expanded Abstracts, 2443−2446.
[17] Lomask, J., Clapp, R. G., and Biondi, B., 2006, Parallel implementation of image segmentation for tracking 3d salt boundaries: 68th EAGE Annual International Meeting, Expanded Abstracts, 1-5.
[18] Meyer, P. E., Schretter, C., and Bontempi, G., 2008, Information-theoretic feature selection in microarray data using variable complementarity: IEEE Journal of Selected Topics in Signal Processing, 2(3), 261-274.
[19] Peng, H., Long, F., and Ding, C., 2005, Feature selection based on mutual information: Criteria of max dependency, max-relevance, and min-redundancy: IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226-1238.
[20] Randen, T., and Sønneland, L., 2005, Atlas of 3D seismic attributes: Mathematical Methods and Modelling in Hydrocarbon Exploration and Production, Springer Verlag, 23−46
[21] Shafiq, M., Wang, Z., Amin, A., Hegazy, T., Deriche, M., and AlRegib, G., 2015, Detection of salt-dome boundary surfaces in migrated seismic volumes using gradient of textures: 85th SEG Annual International Meeting, Expanded Abstracts, 1811-1815.
[22] Yang, H., and Moody, J., 1999, Data visualization and feature selection: New algorithms for non-Gaussian data: Advances in Neural Information Processing Systems, 12, 687−693.
[23] Zhang, Y., and Halpert, A. D., 2012, Enhanced interpreter-aided salt boundary extraction using shape deformation: 82th SEG Annual International Meeting, Expanded Abstracts, 1-5.
[24] Zhou, J., Zhang, Y. Q., Chen, Z. G., and Li, J. H., 2007, Detecting boundary of salt dome in seismic data with edge-detection technique: 77th SEG Annual International Meeting, Expanded Abstracts, 1392−1396.
[1] 宋承云, 刘致宁, 蔡涵鹏, 钱峰, 胡光岷. 基于叠前纹理的储层特征和地震相分析[J]. 应用地球物理, 2016, 13(1): 69-79.
[2] Asjad Amin and Mohamed Deriche. 三维多方向边缘探测技术识别盐丘的新方法[J]. 应用地球物理, 2015, 12(3): 334-342.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司