APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 437-448    DOI: 10.1007/s11770-016-0575-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
不同激励源井地电位成像技术三维正反演方法研究
白泽1,谭茂金1,2,张福莱3
1. 中国地质大学地球物理与信息技术学院,北京100083
2. 地下信息探测技术与仪器教育部重点试验室(中国地质大学(北京)),北京100083
3. 东方华隆(北京)石油技术有限公司,北京100049
Three-dimensional forward modeling and inversion of borehole-to-surface electrical imaging with different power sources
Bai Ze1, Tan Mao-Jin1,2, and Zhang Fu-Lai3
1. School of Geophysics and Information Technology of China University of Geosciences, Beijing 100083, China.
2. Key laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing 100083, China.
3. Beijing Horizontal Hualong Technology Ltd., Beijing 100049, China.
 全文: PDF (1476 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 井地电位成像是通过套管向井中供电或将电源放在井中,在地表观测电位异常的一项技术,其供电源有线源和点源两种类型。为了研究这两种电源对地下异常体产生的电位异常特征,本文针对不同激励源,采用有限差分方法进行数值模拟研究,在线性方程组求解电位时引入不完全Cholesky共轭梯度(ICCG)迭代方法,分别实现了点源和线源井地电位成像技术的三维正演。最后,基于阻尼最小二乘法实现了井地电位成像技术的电阻率三维反演。设计不同地电模型分别进行正演和反演试算,正演结果表明,供电电源的类型不同,异常体在地表的电位异常特征也不同;反演结果表明,低阻体的反演结果要好于高阻体,点源置于异常体下方时反演的电阻率对异常体边界的识别比线源更加准确。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词井地电位成像技术   不同激励源   电位特征   正演   电阻率反演     
Abstract: Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low-resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source.
Key wordsBorehole-to-surface electrical imaging   different types of exciting sources   potential characteristic   forward modeling   resistivity inversion   
收稿日期: 2016-01-28;
基金资助:

本研究由国家重大专项“大型油气田及煤层气开发”(编号:2016ZX05014-001),国家自然科学基金(编号:41172130 和 U1403191)和中央高校基本科研业务费项目(编号:2-9-2015-209)资助。

引用本文:   
. 不同激励源井地电位成像技术三维正反演方法研究[J]. 应用地球物理, 2016, 13(3): 437-448.
. Three-dimensional forward modeling and inversion of borehole-to-surface electrical imaging with different power sources[J]. APPLIED GEOPHYSICS, 2016, 13(3): 437-448.
 
[1] Beasley, C. W., and Ward, S. H., 1986, Tree-dimensional mise-a-la-masse modeling applied to mapping fracture zones: Geophysics, 51(1), 98−113.
[2] Bevc, D., and Morrison, H. F., 1991, Borehole-to-surface electrical resistivity monitoring of salt water injection experiment: Geophysics, 56(6), 769−777.
[3] Chen, D. P., 2009, 3D FEM forward modeling research of borehole-to-surface DC method drived by the arbitrary linear current source: Msc Thesis, Central South University, Hunan.
[4] Chen, Y. X., 2012, Three-dimensional FEM numerical simulation of borehole-ground potential with gradient current source: Msc Thesis, Central South University, Hunan.
[5] Dai, Q. W., Hou, Z. C., and Wang, H. H., 2013, Analysis of anomaly of Borehole-to-surface electrical method by 2.5D finite element numerical simulation: Geophysical Computing Technology, 35(4), 458−462.
[6] David, P., Carlos, T. V., and Zhang, Z. Y., 2008, Sensitivity study of borehole-to-surface and crosswell electromagnetic measurements acquired with energized steel casing to water displacement in hydrocarbon-bearing layers: Geophysics, 73(6), 261−268.
[7] Dey, A., and Morrison, H. F., 1979, Resistivity modeling for arbitrarily shaped two-dimensional structures: Geophysical Prospecting, 27(1), 106−136.
[8] Du, L. Z., Jiang, X. M., Qu, J. W., et al., 2013, Experimental study on abnormal electric field distribution of surface-borehole electrical method: Global Geology, 3(32), 558−589.
[9] Gu, J. W., Li, F. J., Liu, Y., et al., 2015, Establishing and solving of a one-dimensional well-ground potential model: Journal of China University of Petroleum, 39(6), 100−102.
[10] Ho, T. L., 2009, 3-D inversion of borehole-to-surface electrical data using a back-propagation neural network: Journal of Applied Geophysics, 68(4), 489−499.
[11] LeMasne, D., and Poirmeur, C., 1988, Three-dimensional model results for an electrical hole-to-surface method: Application to the interpretation of a filed survey: Geophysics, 53(1), 85−103.
[12] Li, Y. G., and Spitzer, K., 2002, Tree-dimensional DC resistivity forward modeling using finite elements in comparison with finite-difference solutions: Geophysics Journal International, 151(3), 924−934.
[13] Li, Y. G., and Spitzer, K., 2005, Finite element resistivity modeling for three-dimensional structures with arbitrary anisotropy: Physics of the Earth and Planetary Interiors, 150(1−3), 15−27.
[14] Lian, J., 2007, Research on forward modeling and inversion of vertical line source borehole-ground DC method: M sc Thesis, China University of Geosciences (Beijing), Beijing.
[15] Liu, H. F., Chen, D. P., Dai, Q. W., et al., 2011, 3D FEM modeling of borehole-surface potential with line current source in semi-underground space of continuous variation of conductivity: Journal of Guilin University of Technology, 31(1), 29−38.
[16] Loke, M. H., and Barker, R. D., 1995, Least-squares deconvolution of apparent resistivity pseudosections: Geophysics, 60(6), 1682−1690.
[17] Lorenzo, D. C., Maria, T. P., Maria, C. C., et al., 2013, Characterization of dismissed landfill via electrical resistivity tomography and mise-a-la-masse method: Journal of Applied Geophysics, 98, 1−10.
[18] Mizunaga, H., and Ushijima, K., 1991, Three-Dimensional numerical modeling for the mise-a-la-masse method: Geophysical Exploration (Butsurib-Tansa), 44(4), 215−226.
[19] Nimmer, R. E., and Osiensky, J. L., 2002, Using mise-a-la-masse to delineate the migration of conductive tracer in partially saturated basalt: Environmental Geosciences, 9(2), 8−87.
[20] Perri, M. T., Cassiani, G., Gervasio, I., et al., 2012, A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: comparison of time-lapse results: Journal of Applied Geophysics, 79, 6−16.
[21] Pridmore, D. F., Hohmann, G. W., Ward, S. H., et al., 1981, An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions: Geophysics, 46(7), 1009−1024.
[22] Scriba, H., 1981, Computation of the electrical potential in three dimension structures: Geophysical Prospecting, 29(5), 790−802.
[23] Spitzer, K., 1995, A 3-D finite-difference algorithm for DC resistivity modeling using conjugate gradient methods: Geophysical Journal International, 123(3), 903−914.
[24] Su, B. Y., Fujimitsu, Y., Xu, J. L., et al., 2012, A model study of residual oil distribution jointly using crosswell and borehole-surface electric potential methods: Applied Geophysics, 9(1), 19−26.
[25] Surendra, R. P., 2004, Tracing groundwater flow by mise-a-la-masse measurement of injected saltwater: Journal of Environmental and Engineering Geophysics, 9(3), 155−165.
[26] Tan, H. Q., Shen, J. S., Zhou, C., et al., 2004, Borehole-to-surface electrical imaging technique and its application to residual oil distribution analysis of the eighth section in Gudong Oilfield: Journal of the University of Petroleum, China, 28(2), 32−37.
[27] Thomas, H., Andreas, K., and Frederic, N., 2015, Covariance-constrained difference inversion of time-lapse electrical resistivity tomography data: Geophysics, 81(5), 311−322.
[28] Tsili, W., Stodt, J. A., Stierman, D. J., et al., 1991, Mapping hydraulic fracture using a borehole-to-surface electrical resistivity method: Geoexploration, 28(3−4), 349−369.
[29] Tsourlos, P., Ogilvy, R., Papazachos, C., et al., 2011, Measurement and inversion schemes for single borehole-to-surface electrical resistivity tomography surveys: Geophysics and Engineering, 8(4), 487−497.
[30] Tsourlos, P., Papadopoulos, N., Papazachos, C., et al., 2014, Efficient 2D inversion of long ERT section: Journal of Applied Geophysics, 105, 213−224.
[31] Wang, Z. G., He, Z. X., Wei, W. B., et al., 2005, 3-D physical model experiments of well-to-ground electrical survey: Oil Geophysical Prospecting, 40(5), 595−597.
[32] Wu, X. P., 2003, A 3-D finite-element algorithm for DC resistivity modeling using the shifted incomplete Cholesky conjugate gradient method: Geophysical Journal International, 154(3), 947−956.
[33] Wu, X. P., and Xu, G. M., 2000, Study on 3-D resistivity inversion using conjugate gradient method: Chinese Journal of Geophysics, 43(3), 421−426.
[34] Wu, X. P., Xu, G. M., and Li, S. C., 1998, The calculation of Three-dimensional geoelectric field of point source by incomplete Cholesky conjugate gradient method: Acta Geophysica Sinica, 41(6), 848−855.
[35] Zhang, Y. Y., Liu, D. J., Ai, Q. H., et al., 2014, 3D modeling and inversion of the electrical resistivity tomography using steel cased boreholes as long electrodes: Journal of Applied Geophysics, 109, 292−300.
[36] Zhang, Y., 2009, The forward modeling of Three-dimensional borehole-to-surface logging technology: MSc thesis, Ocean University of China, Qingdao.
[37] Zhou, X. R., Zhong, B. S., Jiang, Y. L., et al., 1986: Numerical simulation technology of electrical prospecting, Sichuan Science and Technology Press, Chengdu, 163−239.
[38] Zhou, Y. Q., 2015, 2.5-D modeling and inversion of the surface to hole resistivity imaging research and application: Msc Thesis, East China Institute of Technology, Jiangxi.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[3] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[4] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[5] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[6] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[7] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[8] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[9] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[10] 赵虎,武泗海,杨晶,任达,徐维秀,刘迪鸥,朱鹏宇 . 基于模型的最优接收道数设计方法研究[J]. 应用地球物理, 2017, 14(1): 49-55.
[11] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[12] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
[13] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
[14] 李俊杰, 严家斌, 皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
[15] 朱超, 郭庆新, 宫清顺, 刘占国, 李森明, 黄革萍. 基于Xu-White模型的致密储层叠前正演模拟研究与应用[J]. 应用地球物理, 2015, 12(3): 421-431.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司