APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 425-436    DOI: 10.1007/s11770-016-0570-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
砂岩样品的震电效应实验研究
彭蓉1,2,3,魏建新1,2,3,狄帮让1,2,3,丁拼搏1,2,3,刘子淳1,2,3
1. 油气资源与探测国家重点实验室,北京 102249
2. CNPC物探重点实验室,北京 102249
3. 中国石油大学(北京)地球物理与信息工程学院,北京102249
Experimental research on seismoelectric effects in sandstone
Peng Rong1,2,3, Wei Jian-Xing1,2,3, Di Bang-Rang1,2,3, Ding Pin-Bo1,2,3, and Liu Zi-Chun1,2,3
1. State Key Laboratory of Petroleum Resource and Prospecting, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Exploration, Beijing 100083, China.
3. Institute of Geophysics and Information Engineering, China University of Petroleum (Beijing), Beijing 102249, China.
 全文: PDF (1088 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震波场和电磁场耦合产生的震电效应与储层物性参数有关,含流体孔隙介质中震电效应的研究有助于更好的描述储层特性。本文我们对饱和砂岩样品中的震电效应进行了实验研究,构建了一套震电测量装置。利用此测量装置记录了在声波激励下砂岩样品中产生的震电转换信号,观测得到了砂岩界面产生的震电信号的衰减特性,在此基础上进一步研究了震电信号与砂岩物理参数之间的关系。在震电效应的实验中发现尽量减小参考电位与震电信号扰动区的基准电位之间的电位差是保证震电实验测量精确性的关键点,能够显著提高震电信号的可探测性。震电测量结果证实了地震波在含流体孔隙介质中传播时,能诱导震电耦合,同时给出了震电界面响应的特点。震电信号振幅随着波源与岩样距离的增加呈线性衰减,随着接收电极与岩样界面距离的增加呈指数衰减。不同渗透率砂岩样品中产生的震电响应结果表明震电响应的强弱与样品渗透率成正相关,震电效应可以作为研究储层渗透率的一种新方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭蓉
魏建新
狄帮让
丁拼搏
刘子淳
关键词震电效应   震电响应   电位差   饱和砂岩   渗透率     
Abstract: The seismoelectric effects induced from the coupling of the seismic wave field and the electromagnetic field depend on the physical properties of the reservoir rocks. We built an experimental apparatus to measure the seismoelectric effects in saturated sandstone samples.We recorded the seismoelectric signals induced by P-waves and studied the attenuation of the seismoelectric signals induced at the sandstone interface. The analysis of the seismoelectric effects suggests  that the minimization of the potential difference between the reference potential and the baseline potential of the seismoelectric disturbance area is critical to the accuracy of the seismoelectric measurements and greatly improves the detectability of the seismoelectric signals. The experimental results confirmed that the seismoelectric coupling of the seismic wave field and the electromagnetic field is induced when seismic wave propagating in a fluid-saturated porous medium. The amplitudes of the seismoelectric signals decrease linearly with increasing distance between the source and the interface, and decay exponentially with increasing distance between the receiver and the interface. The seismoelectric response of sandstone samples with different permeabilities suggests  that the seismoelectric response is  directly related to permeability, which should help obtaining  the permeability of reservoirs in the future.
Key wordsSeismoelectric effects   seismoelectric response   potential difference   sandstone   permeability   
收稿日期: 2016-04-25;
基金资助:

本研究由国家重大专项(编号:2016ZX05018-005)和物探新方法新技术研究(编号:2014A-3612)资助。

引用本文:   
彭蓉,魏建新,狄帮让等. 砂岩样品的震电效应实验研究[J]. 应用地球物理, 2016, 13(3): 425-436.
PENG Rong,WEI Jian-Xin,DI Bang-Rang et al. Experimental research on seismoelectric effects in sandstone[J]. APPLIED GEOPHYSICS, 2016, 13(3): 425-436.
 
[1] Block, G. I., and Harris, J. G., 2006, Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments: Journal of Geophysical Research, 111(B1), 279-288.
[2] Chen, B., and Mu, Y., 2005, Experimental studies of seismoelectric effects in fluid-saturated porous media: Journal of Geophysics and Engineering, 2(3), 222-230.
[3] Deckman, H., Herbolzheimer, E., and Kushnick, A., 2005, Determination of electrokinetic coupling coefficients: 75th Annual International Meeting, SEG, Expanded Abstracts, 561-564.
[4] Dukhin, A. S., Goetz, P. J., and Thommes, M., 2010, Seismoelectric effect: a non-isochoric streaming current. 1. experiment: Journal of Colloid and Interface Science, 345(2), 547-553.
[5] Dukhin, A. S., and Shilov, V. N., 2010, The seismoelectric effect: a nonisochoric streaming current 2. theory and its experimental verification: J. Colloid Interface Sci., 346(1), 248-253.
[6] Gao, Y., and Hu, H. S., 2010, Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium: Geophys. J. Int., 181, 873-896.
[7] Garambois, S., and Dietrich, M., 2001, Seismoelectric wave conversions in porous media: field measurements and transfer function analysis: Geophysics, 66(5), 1417-1430.
[8] Glover, P. W. J., Ruel, J., Tardif, E., and Walker, E., 2012a, Frequency-dependent streaming potential of porous media—part 1: experimental approaches and apparatus design: International Journal of Geophysics, 2012(1), 1-15.
[9] Glover, P. W. J., Walker, E., Ruel, J., and Tardifet, E., 2012b, Frequency-dependent streaming potential of porous media—part 2: experimental measurement of unconsolidated materials: International Journal of Geophysics, 2012(2), 1-17.
[10] Gershenzon, N. I., Bambakidis, G., and Ternovskiy, I., 2014, Coseismic electromagnetic field due to the electrokinetic effect: Geophysics, 79(5), 217-E229.
[11] Haartsen, M, W., and Pride, S. R., 1996, Electroseismic wave properties: Journal of the Acoustical Society of America, 100(3), 1301-1305.
[12] Haartsen, M. W., and Pride, S. R., 1997, Electroseismic waves from point sources in layered media: Journal of Geophysical Research, 102(B11), 24745-24784.
[13] Haines, S. S., Pride, S. R., Klemperer, S. L. et al., 2007, Seismoelectric imaging of shallow targets: Geophysics, 72(2), G9-G20.
[14] Hu, H. S., and Gao, Y. X., 2011, Electromagnetic field generated by a finite fault due to electrokinetic effect: Journal of Geophysical Research-Solid Earth. 116, B08302.
[15] Lide, D. R., 2010, CRC handbook of chemistry and physics: 90th ed. (Internet), CRC Press/Taylor and Francis.
[16] Pride, S., 1994, Governing equations for the coupled electromagnetics and acoustics of porous media: Physical Review B, 50(21), 15678−5696.
[17] Pengra, D. B., Li, S. X., and Wong, P. Z., 1999, Determination of rock properties by low-frequency AC electrokinetics: Journal of Geophysical Research, 104(B12), 29485.
[18] Revil, A., Jardani, A., Sava, P., and Haas, A., 2015, Theseismoelectricmethod: theory and application: John Wiley & Sons, Ltd, UK, 73-97.
[19] Shaw, D. J., 1992, The solid-liquid interface, introduction to colloid and surface chemistry (4th Edition): Butterworth-Heinemann, 151−173.
[20] Schakel, M. D., Smeulders, D. M. J., Slob, E. C., and Heller, H. K. J., 2011a, Seismoelectric interface response: experimental results and forward model: Geophysics, 76(4), N29-N36.
[21] Schakel, M. D., Smeulders, D. M. J., Slob, E. C., and Heller, H. K. J., 2011b, Laboratory measurements and theoretical modeling of seismoelectric interface response and coseismic wave fields: Journal of Applied Physics, 109(7), 074903.
[22] Schakel, M. D., Smeulders, D. M. J., Slob, E. C., and Heller, H. K. J., 2011c, Seismoelectric fluid/porous-medium interface response model and measurements: Transport in Porous Media, 93(2), 271-282.
[23] Smeulders, D. M. J., Grobbe, N., Heller, H. K. J., and Schakel, M. D., 2014, Seismoelectric conversion for the detection of porous medium interfaces between wetting and nonwetting fluids: Vadose Zone Journal, 13(5), 1539-1663.
[24] Surkov, V. V., Uyeda, S., Tanaka, H., et al., 2002, Fractal properties of medium and seismoelectric phenomena: Journal of Geodynamics, 33(4-5), 477-487.
[25] Thompson, A. H., and Gist, G. A., 1993, Geophysical applications of electrokinetic conversion: The Leading Edge, 12(12), 1169-1173.
[26] Wang, J., Hu, H. S., and Guan, W., 2015a, Experimental measurements of seismoelectric signals in borehole models: Geophys. J. Int., 203, 1937-1945.
[27] Wang, J., Li, H., Hu, H. S. et al., 2015b, Electrokinetic experimental study in borehole model I: the evaluation of rock permeability: Chinese J. Geophys. (in Chinese),58(10), 3855-3863.
[28] Zhu, Z., Cheng, C. H., and Toksöz, M. N., 1994, Electrokinetic conversion in a fluid-saturated porous rock sample: 64th Annual International Meeting, SEG, Expanded Abstracts, 1057-1060.
[29] Zhu, Z., Haartsen, M. W., and Toksöz, M. N., 1999, Experimental studies of electrokinetic conversions in fluid-saturated borehole models: Geophysics, 64(5), 1349-1356.
[30] Zhu, Z., and Toksöz, M. N., 2003, Crosshole seismoelectric measurements in borehole models with fractures: Geophysics, 68(5), 1519-1524.
[31] Zhu, Z., and Toksöz, M. N., 2005, Seismoelectric and seismomagnetic measurements in fractured borehole models: Geophysics, 70(4), F45-F51.
[32] Zhu, Z., and Toksöz, M. N., 2012, Formation velocity measurements using multipole seismoelectric LWD: Experimental studies: 82th Annual International Meeting, SEG, Expanded Abstracts, 1-6.
[33] Zhu, Z., Toksöz, M. N., and Zhan, X., 2015, Seismoelectric measurements in a porous quartz-sand sample with anisotropic permeability: Geophysical Prospecting, 64(3), 700-713.
[1] 周峰, 胡祥云, 孟庆鑫, 胡旭东, 刘志远. 利用泥浆侵入效应评估储层渗透率的模型和方法[J]. 应用地球物理, 2015, 12(4): 482-492.
[2] 李丰波, 鞠晓东, 乔文孝, 卢俊强, 门百永. 一种新型动电测井探测器研究与实验测试[J]. 应用地球物理, 2014, 11(4): 364-373.
[3] 李传辉, 赵倩, 徐红军, 冯凯, 刘学伟. 基于核磁共振测量的南海神狐海域天然气水合物对地层渗透率的影响研究[J]. 应用地球物理, 2014, 11(2): 207-214.
[4] 赵倩, 邓克俊, 刘学伟. 地层渗透率与水合物含量关系的模拟研究[J]. 应用地球物理, 2011, 8(2): 101-109.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司