APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 364-374    DOI: 10.1007/s11770-016-0542-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
利用三维数字岩心计算龙马溪组页岩等效弹性参数
张文辉1,2,符力耘2,张艳2,金维浚2
1. 中国科学院大学,北京 100049
2. 中国科学院地质与地球物理研究所,油气资源重点实验室,北京 100029
Computation of elastic properties of 3D digital cores from the Longmaxi shale
Zhang Wen-Hui1,2, Fu Li-Yun2, Zhang Yan2, and Jin Wei-Jun2
1. University of the Chinese Academy of Sciences, Beijing 100049, China.
2. Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
 全文: PDF (1057 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 弹性参数在甜点区预测和页岩气的开发过程中扮演着重要的角色,因此研究等效弹性参数随页岩气储层属性的变化是一项很有意义的工作。研究中我们用X射线CT扫描技术获得了较为精确的页岩样品微观结构图像。从这些图像中,我们可以获得孔隙度和矿物的详细情况,据此,我们构建了三维数字岩心,并应用有限元法对弹性参数进行了数值模拟,其间深入考察了子样选取、网格划分、求解器类型以及边界条件等,该方法易于区别不同的矿物及其百分含量。本文重点研究孔隙度和干酪根含量对弹性参数的影响,计算结果表明,孔隙度和干酪根含量对弹性性质有较大的影响,当孔隙度和干酪根含量增加时,弹性模量降低,且当孔隙度小于0.75%左右、干酪根含量大于3%左右时弹性参数减小速率较缓。因为孔隙度仅仅为4.5%,孔隙中填充油或气对弹性参数的影响甚微。不同岩心样本具有不同的孔隙度和干酪根含量,传统岩石物理实验不仅昂贵而且费时,而数值模拟是基于数字岩心来计算弹性参数,更加经济、方便。本研究证实了将页岩样品的微观结构图像与弹性模量的计算相结合来预测页岩弹性参数的可行性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词有效弹性参数   龙马溪组页岩   三维数字岩心   有限元数值方法     
Abstract: The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.
Key wordsLongmaxi black shale   3D digital cores   elastic properties   finite-element method   
收稿日期: 2015-10-22;
基金资助:

本研究由中国科学院先导专项(编号:XDB10010400)和国家博士后自然科学基金(编号:2015M570142)资助。

引用本文:   
. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
. Computation of elastic properties of 3D digital cores from the Longmaxi shale[J]. APPLIED GEOPHYSICS, 2016, 13(2): 364-374.
 
[1] Altowairqi, Y., Rezaee, R., Urosevic, M., et al., 2013, Measuring Ultrasonic Characterization to Determine the Impact of Toc and the Stress Field on Shale Gas Anisotropy: APPEA Journal, 53, 245-254.
[2] Andrä, H., Combaret, N., Dvorkin, N., et al., 2013a, Digital rock physics benchmarks-Part Ι: Imaging and segmentation Computers & Geosciences, 50, 25-32.
[3] Andrä, H., Combaret, N., and Dvorkin, N., 2013b, Digital rock physics benchmarks-Part Π: Computing effective properties: Computers & Geosciences, 50, 33-43.
[4] Arns, C. H., Knackstedt, M. A, Garboczi, E. J. et al., 2002, Computation of linear elastic properties from microtomographic images Methodology and agreement between theory and experiment: Geophysics, 67(5), 1396-1405.
[5] Bai, B. J., Sun Y. P., and Liu, L. B., 2016, Petrophysical properties characterization of Ordovician Utica gas shale in Quebec, Canada: Petrol. Explor. Develop., 43(1), 74-81.
[6] Berge, P. A., Berryman, J. G., and Bonner, B. P., 1993, Influence of microstructure on rock elastic properties: Geophys. Res. Lett., 20, 2619-2622.
[7] Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media: J. Acoustic Soc. Am., 69, 416-424.
[8] Ceron, M. R., Martinez, J. F., Diaz, E., et al., 2013, Digital rock physics for reservoir characterization: Thirteenth International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil.
[9] Chen, S. B., Zhu, Y. M., Wang, H. Y., et al., 2011, Shale Gas Reservoir Characterization: A Typical Case in the Southern Sichuan Basin of China: Energy, 36(11), 6609-6616.
[10] Chen, W. L., Zhou, W., Luo, P., et al., 2013, Analysis of the Shale Gas Reservoir in the Lower Silurian Longmaxi Formation, Changxin 1 Well, Southeast Sichuan Basin, China: Acta Petrologica Sinica, 29(3), 1073-1086.
[11] Chen, Y., Huang, T. F., and Liu, E. R., 2009, Rock Physics: University of Science and Technology of China Press, Hefei, 83-85.
[12] Curtis, J. B., 2002, Fractured shale-gas systems: AAPG Bulletin, 86, 1921-1938.
[13] Curtis, M. E., Ambrose, R. J., and Sondergeld, C. H., 2010, Structural characterization of gas shales on the micro-and nano-scales: Canadian Unconventional Resources and International Petroleum Conference, Society of Petroleum Engineers.
[14] Dewhurst, D. N., Aplin, A. C., Sarda, J. P., et al., 1998, Compaction-driven evolution of porosity and permeability in natural mudstones: an experimental study: J. Geophys. Res. Solid Earth 103/B1, 651-661.
[15] Dewhurst, D. N., and Hennig, A., 2003, Geomechanical properties related to top seal leakage in the Carnarvon Basin, Northwest Shelf, Australia: Pet. Geosci., 9, 255-263.
[16] Dvorkin, J., Walls, J., Tutuncu, A., et al., 2003, Rock property determination using digital rock physics: 73rd Ann. Intertan. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1660-1663.
[17] Fu, L. Y., 2001, Logging analysis of pore pressure in the Northern Carnarvon Basin: APCRC Confidential Report Number 01-005, CSIRO Petroleum.
[18] Fu, L. Y., 2002, Joint Lithologic Inversion, in Wong, P., Aminzadeh, F., and Nikravesh, M., Ed., Soft Computing for Reservoir Characterization and Modeling: Pringer-Verlag Publishers, 511-530.
[19] Fu, L. Y., Wang, X., Hennig, A., and Urosevic, M., 2001, Acoustic analysis of overpressure: from modeling to wireline observation: 15th Ann. Internat. Mtg., Australia Soc. Expl. Geophys., Expanded Abstracts, 243-247.
[20] Garboczi, E. J., and Day, A. R., 1995, An algorithm for calculating the effective linear elastic properties of heterogeneous materials: Three dimensional results for composites with equal phase poisson ratios: J. Mech. Phys. Solids, 43, 1349-1362.
[21] Han, D. H., 1986, Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments: Ph.D. thesis, Stanford Univ.
[22] Huang, J. L., Ju, C. N., Li, J. Z., et al., 2012, Shale gas accumulation conditions and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin,China: Journal of China Coal Society, 37(5), 782-787.
[23] Josh, M., Esteban, L., DellePiane, C., et al., 2012, Laboratory characterisation of shale properties: Journal of Petroleum Science and Engineering, 88-89, 107-124.
[24] Liu X. F., Sun, J. M., and Wang, H. T., 2009, Numerical simulation of rock electrical properties based on digital cores: Applied Geophysics, 6(1), 1-7.
[25] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009, Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale: J Sediment Res, 79(12), 848-861.
[26] Loucks, R. G., and Ruppel, S. C., 2007, Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas: AAPG Bulletin, 91(4), 579-601.
[27] Madonna, C., Quintal, B., Frehner, M., et al, 2013, Synchrotron-based X-ray tomographic microscopy for rock physics investigations: Geophysics, 78(1), 53-64.
[28] Mansfield, M. L., Douglas, J. F., and Garboczi, E. J., 2001, Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects: Physical Review. E, 64(6), 061401.
[29] Milton, G.W., 1981, Bounds on the electromagnetic, elastic, and other properties of two-component composites: Phys. Rev. Lett., 46, 542-545.
[30] Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980, An improved sonic transit time to porosity transform: 21st Ann. Logging Symp., SPWLA, paper P.
[31] Roberts, A. P., and Garboczi, E. J., 2000, Elastic properties of model porous ceramics: J. Amer. Ceramic Soc., 83, 3041-3048.
[32] Saenger, E. H., Krüger, O. S., and Shapiro, S. A., 2004, Numerical considerations of fluid effects on wave propagation: Influence of the tortuositya: Geophysical Research Letters, L21613.
[33] Voigt, W., 1910, Lehrbuch der Kristallphysik, Teubner, Leipzig 954-964 (Reprint 1928).
[34] Wang, K. W., and Li, N., 2008, Numerical simulation of rock pore-throat structure effects on NMR T2 distribution: Applied Geophysics, 5(2), 86-91.
[35] Wang, L., Chen, Y. Y., and Liu, Y. X., 2014, Shale Porous Structural Characteristics of Longmaxi Formation in Pengshui Area of Southeast Sichuan Basin: China Petroleum Exploration, 19(5), 80-87.
[36] Wang, S. F., Dong, D. Z., Wang, Y. M. et al., 2015, A comparative study of the geological feature of marine shale gas between China and the united states: Natural Gas Geoscience, 26(9), 1666−1678.
[37] Wang, Y. D., Yang, Y. S., Xiao, T. Q., et al, 2013, Synchrotron-Based Data-Constrained Modeling Analysis of Microscopic Mineral Distributions in Limestone: International Journal of Geosciences, 4(2), 344-351.
[38] Wang, Z. G., 2015, Breakthrough of Fuling shale gas exploration and development and its inspiration: Oil and Gas Geology (in Chinese), 36(1), 1−6.
[39] Wen, L., Hu, S. Y., and Tian, H. Q., 2001, A study on hydrocarbon source rock of Cambrian in Yangtze area, China: Northwestern Geology (in Chinese), 34, 67-74.
[40] Wo, Y. Y., Zhou, Y., and Xiao, K. H., 2007, The burial history and models for hydrocarbon generation and evolution in the marine strata in southern China: Sedimentary Geology and Tethyan Geology (in Chinese), 27, 94-100.
[41] Wyllie, M., Gregory, A., and Gardner, G., 1956, Elastic wave velocities in heterogeneous and porous media: Geophysics, 21, 41-70.
[42] Zhang, J. C., Jiang, S. L., Tang, X., et al., 2009, Accumulation types and resources characteristics of shale gas in China: Natural Gas Industry (in Chinese), 29, 1-6.
[43] Zhang J. Y., and Sun J. M., 2012, Study on rock elastic properties by application of digital core and effective medium model: Journal of Oil and Gas Technology (in Chinese), 34(2), 65-70.
[1] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司