APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (2): 110-116    DOI: 10.1007/s11770-011-0278-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
自适应基质矿物体积模量提取和流体替换验证
林凯1,熊晓军1,杨晓2,贺振华1,曹俊兴1,张玺华1,王萍2
1. 成都理工大学油气藏地质及开发工程国家重点实验室,四川成都 610059;
2. 中国石油集团川庆钻探工程有限公司地球物理勘探公司,四川成都,610213
Self-adapting extraction of matrix mineral bulk modulus and verifi cation of fl uid substitution

Lin Kai1, Xiong Xiao-Jun1, Yang Xiao2, He Zhen-Hua1, Cao Jun-Xing1, Zhang Xi-Hua1, and Wang Ping2
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China.
2. CNPC Geophysical Chuanqing Drilling Engineering Co., Ltd. Exploration Company, Chengdu 610213, China.
 全文: PDF (1621 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 岩石物理学研究中Gassmann方程被广泛应用于预测岩石中的地震波速度,由于输入的基质矿物体积模量参数不准确,极大的影响预测结果的可靠性,特别是复杂基质矿物组合的碳酸盐岩储层。因此本文结合Russell流体因子和Gassmann-Boit-Geertsma方程计算式,通过引入干岩石骨架泊松比,提出了一种基质矿物体积模量提取方法,能够自适应反演岩石基质矿物等效体积模量,提高流体影响预测的可靠性,通过实际资料流体替换验证,该方法的预测结果是可靠的,并且计算效率高、适应性强。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
林凯
熊晓军
杨晓
贺振华
曹俊兴
张玺华
王萍
关键词自适应方法   基质矿物体积模量   流体替换   干岩石泊松比     
Abstract: Gassmann’s equations are commonly used for predicting seismic wave velocity in rock physics research. However the input matrix mineral bulk modulus parameters are not accurate, which greatly infl uences the prediction reliability. In this paper, combining the Russell fl uid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson’s ratio, we propose an effective matrix mineral bulk modulus extraction method. This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fl uid prediction reliability. The verifi cation of the actual material fl uid substitution also shows that this method is reliable, effi cient, and adaptable.
Key wordsSelf-adapting   matrix mineral bulk modulus   fluid substitution   dry rock Poisson’s ratio   
引用本文:   
林凯,熊晓军,杨晓等. 自适应基质矿物体积模量提取和流体替换验证[J]. 应用地球物理, 2011, 8(2): 110-116.
LIN Kai,XIONG Xiao-Jun,YANG Xiao et al. Self-adapting extraction of matrix mineral bulk modulus and verifi cation of fl uid substitution[J]. APPLIED GEOPHYSICS, 2011, 8(2): 110-116.
 
[1] Adam, L., Batzle, M., and Brevik, I.,2006,Gassmann’s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies: Geophysics, 71(6), 173-183.
[2] Biot, M. A., 1941, General theory of three dimensional consolidation: Journal of Applied Physics, 12(2), 155-164.
[3] Gassmann, F., 1951, Uber die elastizitat poroser medien: Vier Der Natur Gesellschaft, 96, 1-23.
[4] Gregory, A. R., 1976, Fluid saturation effects on dynamic elastic properties of sedimentary rock: Geophysics, 41(5), 895-921
[5] Hashin, Z., and Shtrikman, S., 1963, A variational approach to the theory of the elastic behaviour of multiphase materials: Mech. Phys. Solids, 11, 127-140.
[6] Hill, R., 1952, The elastic behavior of a crystalline aggregate: Proc. Physical Soc., London, 65(A), 349-345.
[7] Krief, M., Garat,J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic): The log Analyst, 31, 355-369.
[8] Mavko, G., Mukerji, T., and Dvorkin, J., 2003, The Rock physics handbook: Tools for seismic analysis in porous media: Cambridge University Press, London, 260-263.
[9] Graul,Mike, G., 1987,Seismic Lithology: Petroleum Industry Press, Beijing, 1-50.
[10] Nur, A., 1992, Critical porosity and the seismic velocities in rocks: EOS, Transactions, American Geophysical Union, 73, 43-66.
[11] Pride, S. R., Gangi, A.F., and Morgan, F. D., 1992, Deriving the equations of motion for porous isotropic media: Journal of the Acoustical Society of America, 92(6), 3278-3290.
[12] Ruiz, F., and Dvorkin, J., 2010, Predicting elasticity in nonclastic rocks with a differential effective medium model: Geophysics, 75(1), 41-53.
[13] Russell, B. H., Hedlin, K., Hilterman, F. J., and Lines, L, R., 2003, Fluid-property discrimination with AVO: A biot-Gas smann perspective: Geophysics, 68(1), 29-39
[14] Smith, T. M., Sondergeld, C. H., and Rai, C. S., 2003, Gassmann ?uid substitutions: A tutorial: Geophysics, 68(2), 430-440.
[15] Yin, B. J., Zeng, H., and Yang, Z. Y., 1995, Theory and Practice of AVO technology: Petroleum Industry Press, Beijing, 36-37.
[16] Zhang, J. Q., Qu, S. L., Sun, J. G., Dong, N., and Yu, W. Q., 2010, A fluid substitution realization method in carbonate reservoir: Oil Geophysical Prospecting, 45(3), 406-409.
[1] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[2] 李景叶, 陈小宏. 地震尺度下碳酸盐岩储层的岩石物理建模方法[J]. 应用地球物理, 2013, 10(1): 1-13.
[3] 李景叶. 基于流体替换技术的地震AVO 属性气藏识别[J]. 应用地球物理, 2012, 9(2): 139-148.
[4] 贺锡雷, 贺振华, 汪瑞良, 王绪本, 蒋炼. 求取岩石基质模量的线形拟合方法[J]. 应用地球物理, 2011, 8(3): 155-162.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司