APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 503-515    DOI: 10.1007/s11770-015-0511-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
无网格法精度分析及在电磁法二维正演中的应用
李俊杰1,严家斌2,皇祥宇2
1. 浙江省水利水电勘测设计院,浙江 杭州 310002
2. 中南大学地球科学与信息物理学院有色资源与地质灾害探查湖南省重点实验室,湖南 长沙 410083
Precision of meshfree methods and application to forward modeling of two-dimensional electromagnetic sources
Li Jun-Jie1, Yan Jia-Bin2, and Huang Xiang-Yu2

1. Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou 310002, China.
2. Key Laboratory of Non-ferrous Resources and Geological Hazard Detection, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.

 全文: PDF (1333 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 无网格法形函数构造不依赖预定义的单元,具有计算精度高、处理复杂模型便利等优点。本文介绍了无单元Galerkin法(EFGM)、点插值法(PIM)与径向基点插值法(RPIM)三种全域弱式无网格法的近似原理及特点;以二维泊松方程为例研究了支持域无量纲尺寸、场节点与背景网格设置对无网格法计算精度的影响。将RPIM与EFGM应用于频率域线源二维正演,给出了RPIM形状参数的推荐值;分析了均匀介质模型大地电磁(MT)二维正演无网格法边界条件直接加载与罚函数法加载的精度差异,结合PIM与RPIM边界条件加载便利及EFGM计算复杂模型精度高的优势,提出了EFG-PIM及EFG-RPIM耦合算法,数值计算结果验证了耦合算法的有效性。研究发现:无网格法及其耦合方法适用于电磁法数值模拟;支持域无量纲尺寸取1.0时无网格法精度与效率高,场节点与背景网格重合时计算效果佳;泊松方程求解PIM及RPIM精度较EFGM低,计算均匀介质MT响应精度较EFGM高;RPIM改善了PIM计算涉及的奇异性问题,对应支持域无量纲尺寸选择空间大。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李俊杰
严家斌
皇祥宇
关键词无单元Galerkin法   点插值法   径向基点插值法   泊松方程   线源二维正演   无网格耦合法   大地电磁     
Abstract: Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled-source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG–PIM and EFG–RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM.
Key wordsElement-free Galerkin method')" href="#">

Element-free Galerkin method   point interpolation method   radial point interpolation method   Poisson equation   controlled-source   electromagnetic modeling   coupled meshfree method   

收稿日期: 2015-07-17;
基金资助:

本研究由国家自然基金项目(编号:40874055)和湖南省自然基金项目(编号:14JJ2012)资助。

引用本文:   
李俊杰,严家斌,皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
Li Jun-Jie,Yan Jia-Bin,Huang Xiang-Yu. Precision of meshfree methods and application to forward modeling of two-dimensional electromagnetic sources[J]. APPLIED GEOPHYSICS, 2015, 12(4): 503-515.
 
[1] Belytschko, T., Lu, Y. Y., and Gu, L., 1994a, Fracture and crack growth by element-free Galerkin methods: Modelling and Simulation in Materials Science and Engineering, 2(3), 519−534.
[2] Belytschko, T., Lu, Y. Y., and Gu, L., 1994b, Element-free Galerkin methods: International Journal for Numerical Methods in Engineering, 37(2), 229−256.
[3] Dong, H., Wei, W. B., Ye, G. F., Jin, S., and Jing, J. E., 2014, Study of three-dimensional magnetotelluric inversion including surface topography based on finite-difference method: Chinese Journal of Geophysics, 57(3), 939−952.
[4] Dai, Q. W., and Wang, H. H., 2013, Element free method forward modeling of GPR based on random medium model: The Chinese Journal of Nonferrous Metals, 23(9), 1−9.
[5] Feng, C., Li, S. H., and Liu, X.Y., 2014, A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation: Explosion and Shock Waves, 34(3), 292−299.
[6] Feng, D. S., Wang, H. H., and Dai, Q. W., 2013, Forward simulation of Ground Penetrating Radar based on the element-free Galerkin method: Chinese Journal of Geophysics, 56(1), 298−308.
[7] Franke, C., and Schaback, R., 1998, Solving partial differential equations by collocation using radial basis functions: Applied Mathematics and Computation, 93(1), 73−82.
[8] Hu, Y. C., Li, T. L., Fan, C. S., Wang, D. Y., and Li, J. P., 2015, Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method: Applied Geophysics, 12(1), 35−46.
[9] Jia, X. F., Hu, T. Y., and Wang, R. Q., 2005, A meshless method for acoustic and elastic modeling: Applied Geophysics, 2(1), 1−6.
[10] Jia, X. F., Hu, T. Y., and Wang, R. Q., 2006, A mesh-free algorithm of seismic wave simulation in complex medium: Oil Geophysical Prospecting, 41(1), 43−48
[11] Li, J., 2010, Frequency domain controlled-source two-dimensional forward numerical simulation using finite element method: PhM Thesis, Central South University of Geosciences and Info-Physics, Changsha.
[12] Li, J. J., and Yan, J. B., 2014a, Developments of meshlessmethod and applications in geophysics: Progress in Geophysics, 29(1), 452−461.
[13] Li, J. J., and Yan J. B., 2014b, Magnetotelluric two-dimensional forward numerical modeling by meshfree point interpolation method: Geophysical Prospecting for Petroleum, 53(5), 617−626.
[14] Li, J. J., and Yan, J. B., 2015, Magnetotelluric twodimensional forward by finite element-radial point interpolation method: The Chinese Journal of Nonferrous Metals, 25(5), 1314−1324.
[15] Liu, G. R., and Gu, Y. T., 2001, A point interpolation method for two-dimensional solids: International Journal for Numerical Methods in Engineering, 50(4), 937−951.
[16] Liu, G. R., and Gu, Y. T., 2005, An Introduction to Meshfree Methods and Their Programming: Springer, Berlin.
[17] Liu, L. C., Dong, X. H., and Li, C. X., 2009, Adaptive finite element-element-free Galerkin coupling method for bulk metal forming processes: Journal of Zhejiang University-Science A, 10(3), 353−360.
[18] Liu, Y., Wang, X. B., and Wang, Y., 2013, Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation: Applied Geophysics, 10(2), 134−144.
[19] Lu, P., Zhao, G. Q., Guan Y. J., and Wu, X., 2008, Bulk metal forming process simulation based on rigid-plastic/visco-plastic element free Galerkin method: Materials Science and Engineering A, 479(1), 197−212.
[20] Ma, S., Zhang, X., and Qiu, X. M., 2009, Comparison study of MPM and SPH in modeling hypervelocity impact problems: International Journal of Impact Engineering, 36(2), 272−282.
[21] Ren, Z. Y., and Tang, J. T., 2010, 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method: Geophysics, 75(1), 7−17.
[22] Wang, J. G., and Liu, G. R., 2002, A point interpolation meshless method based on radial basis functions: International Journal for Numerical Methods in Engineering, 54(11), 1623−1648.
[23] Wang, R., Wang, M. Y., and Di, Q. Y., 2006, Electromagnetic modeling due to line source in frequency domain using finite element method: Chinese Journal of Geophysics, 49(6), 1858−1866.
[24] Wittke, J., and Tezkan, B., 2014, Meshfree magnetotelluric modeling: Geophysical Journal International, 198(2), 1255−1268.
[25] Xu, J. R., 2010, Research and applications of 2-D MT forward modeling and inversion with topography: PhD Thesis, Central South University of Geosciences and Info-Physics, Changsha.
[26] Xu, S. Z., 1994, Finite element method for geophysics: Science Press, Beijing, 229−235.
[27] Yan, J. B., and Li, J. J., 2014, Magnetotelluric forward calculation by meshless method: Journal of Central South University (Science and Technology), 45(10), 3513−3520.
[28] Zhang, J. F., Tang, J. T., Yu, Y., and Liu, C. S., 2009, Finite element numerical simulation on line controlled source based on quadratic interpolation: Journal of Jilin University (Earth Science Edition), 39(5), 929−935.
[29] Zhdanov, M. S., Varentsov, I. M., Weaver, J. T., Golubev, N. G., and Krylov V. A., 1997, Methods for modelling electromagnetic fields results from COMMEMI-the international project on the comparison of modelling methods for electromagnetic induction: Journal of Applied Geophysics, 37(3), 133−271.
[30] Zhang, Y. Y., and Chen, L., 2008, A simplified meshless method for dynamic crack growth: Cmes-computer Modeling in Engineering and Sciences, 31(3), 189−200.
[1] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[2] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[3] 王堃鹏,谭捍东,王涛. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
[4] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
[5] 林昌洪, 谭捍东, 舒晴, 佟拓, 张玉玫. 稀疏测线大地电磁资料三维反演研究:合成算例[J]. 应用地球物理, 2012, 9(1): 9-18.
[6] Shireesha M. and Harinarayana T.. 大地电磁测深数据处理—4元素和6元素阻抗张量元素的比较研究[J]. 应用地球物理, 2011, 8(4): 285-292.
[7] 林昌洪, 谭捍东, 佟拓. 大地电磁全信息资料三维共轭梯度反演研究[J]. 应用地球物理, 2011, 8(1): 1-10.
[8] 林昌洪, 谭捍东, 佟拓. 大地电磁三维快速松弛反演并行算法研究[J]. 应用地球物理, 2009, 6(1): 77-83.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司