APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 493-502    DOI: 10.1007/s11770-015-0517-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
关于求解地层介质中瞬变电磁场的离散镜像方法研究
孟庆鑫1,潘和平2,骆淼2
1. 石家庄经济学院勘查技术与工程学院,石家庄 050031
2. 中国地质大学(武汉)地球物理与空间信息学院,武汉 430074
A study on the discrete image method for calculation of transient electromagnetic fields in geological media
Meng Qing-Xin1, Pan He-Ping2, and Luo Miao2
1. College of Exploration Technology and Engineering, Shijiazhuang University of Economics, Shijiazhuang 050031, China.
2. Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan 430074, China.
 全文: PDF (1353 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对地面场源在地层介质中所产生瞬变电磁场的数值计算方法和响应分析问题,本文展开研究.解法方面,传统离散镜像法多采用复数运算、数字滤波等方法计算量大,针对这些问题,提出一种改进的离散镜像方法:基于Gaver-Stehfest概率变换算法将电磁场解式实数化,选用Prony方法对目标核函数进行指数级数逼近,根据离散镜像原理和近似系数闭合式求解瞬变电磁场.通过试算均质模型中瞬变电磁场并对比汉克尔变换的数字滤波法所得结果,证明该方法有效且具有较好的精度和适用性.继而基于该方法计算地表磁偶源在典型地电模型中产生的瞬变电磁场,对“地面激发-地层中测量”方式所得感应磁场水平分量响应进行分析并得出结论:瞬变场水平分量响应与地电结构、观测时间、空间位置等因素有关,感应磁场水平分量响应反映出涡流场分布及其垂向梯度变化情况,在探测异常体的工作中应尽量选取零偏移距、较大偏移距位置钻孔或用较大观测延时以减小背景场对勘测结果的影响。文中所用离散镜像方法与正演计算结论可为相关研究工作提供参考依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟庆鑫
潘和平
骆淼
关键词离散镜像法   瞬变电磁场   井中瞬变电磁   水平分量响应     
Abstract: We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method, involves complex operation, and its digital filtering algorithm requires a large number of calculations. To solve these problems, we proposed an improved discrete image method, where the following are realized: the real number of the electromagnetic field solution based on the Gaver–Stehfest algorithm for approximate inversion, the exponential approximation of the objective kernel function using the Prony method, the transient electromagnetic field according to discrete image theory, and closed-form solution of the approximate coefficients. To verify the method, we tentatively calculated the transient electromagnetic field in a homogeneous model and compared it with the results obtained from the Hankel transform digital filtering method. The results show that the method has considerable accuracy and good applicability. We then used this method to calculate the transient electromagnetic field generated by a ground magnetic dipole source in a typical geoelectric model and analyzed the horizontal component response of the induced magnetic field obtained from the “ground excitation–stratum measurement” method. We reached the conclusion that the horizontal component response of a transient field is related to the geoelectric structure, observation time, spatial location, and others. The horizontal component response of the induced magnetic field reflects the eddy current field distribution and its vertical gradient variation. During the detection of abnormal objects, positions with a zero or comparatively large offset were selected for the drill-hole measurements or a comparatively long observation delay was adopted to reduce the influence of the ambient field on the survey results. The discrete image method and forward calculation results in this paper can be used as references for relevant research.
Key wordsDiscrete image method   Transient electromagnetic fields   Borehole transient electromagnetic method   Horizontal component response   
收稿日期: 2015-07-17;
基金资助:

本研究由国家自然科学基金项目(编号:41304082),河北省自然科学基金项目(编号:D2014403011)和中国地质调查局地质大调查项目(编号:12120114090201)联合资助。

引用本文:   
孟庆鑫,潘和平,骆淼. 关于求解地层介质中瞬变电磁场的离散镜像方法研究[J]. 应用地球物理, 2015, 12(4): 493-502.
Meng Qing-Xin,Pan He-Ping,Luo Miao. A study on the discrete image method for calculation of transient electromagnetic fields in geological media[J]. APPLIED GEOPHYSICS, 2015, 12(4): 493-502.
 
[1] Anderson, W. L., 1989, A hybrid fast Hankel transform algorithm for electromagnetic modeling: Geophysics, 54(2), 263−266.
[2] Buselli, G., and Lee, S. K., 1996, Modelling of drill-hole TEM responses from multiple targets covered by a conductive overburden: Exploration Geophysics, 27(3), 141−153.
[3] Commer, M., and Newman, G., 2004, A Parallel Finite-Difference Approach for 3D Transient Electromagnetic Modeling with Galvanic Sources: Geophysics, 69(5), 1192−1202.
[4] Fu, C. M., Di, Q. Y., and Wang, M. Y., 2010, Calculate electromagnetic fields in stratified medium with layer-matrix method: Chinese J. Geophys (in Chinese), 53(1), 177−188.
[5] Ge, Y. H., and Esselle, K. P., 2002, New closed-form Green's functions for microstrip structure --- Theory and results: IEEE Transactions on Microwave Theory and Techniques, 50(6), 1556−1560.
[6] Guptasarma, D., and Singh, B., 1997, New digital linear filters for Hankel J(0) and J(1) transforms: Geophysical Prospecting, 45(5), 745−762.
[7] Hou, W. B., Liu, T. Q., and Li, X. Y., 2010, Prony analysis of low frequency oscillations based on empirical mode decomposition filtering: Acta Phys. Sin. (in Chinese), 59(5), 3531−3537.
[8] Jeffrey, A., and Zwillinger, D., 2007, Table of integrals, series, and products: Academic press, New York.
[9] Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77(3), F21−F30.
[10] Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium: Geophysical Prospecting, 55(1), 83−89.
[11] Kuznetsov, A., 2013, On the Convergence of the Gaver-Stehfest Algorithm: SIAM Journal on Numerical Analysis, 51(6), 2984−2998.
[12] Liu, Y. H., Liu, G. X., Weng, A. H., Chen, Y. L., Jia, D. Y., and Liao, X. D., 2011, Calculation of low-frequency electromagnetic Green’s functions using two-level approximate discrete complex image method: Chinese J. Geophys (in Chinese), 54(4), 1114−1121.
[13] Masol, V., and Teugels, J. L., 2010, Numerical accuracy of real inversion equation s for the Laplace transform: Journal of computational and Applied Mathematics, 233(10), 2521−2533.
[14] Meng, Q. X., and Pan, H. P., 2012, Numerical simulation analysis of surface-hole TEM responses: Chinese J. Geophys (in Chinese), 55(3), 1046−1053.
[15] Meng, Q. X., and Pan, H. P., 2014, Forward simulation of surface-borehole TEM in geological medium effect: Journal of China University of Mining & Technology (in Chinese), 43(6), 1113−1119.
[16] Mohsen, A. A., and Hashish, E. A., 1994, The fast Hankel transform: Geophysical Prospecting, 42(2), 131−139.
[17] Niu, Z. L., 2007, The Theory of Time Domain Electromagnetic Methods: Central South University of Technology Press, Changsha.
[18] Sarkar, T. K., Park, S., and Koh, J., 2000, Application of the matrix pencil method for estimating the SEM (singularity expansion method) poles of source-free transient responses from multiple look directions: IEEE Transactions on Antennas and Propagation, 48(4), 612−618.
[19] Schaa, R., Reid, J. E., and Fullagar, P. K., 2006, Unambiguous apparent conductivity for fixed-loop transient electromagnetic data: Geophysical Prospecting, 37(4), 348−354.
[20] Stolz, E. M., 2000, Electromagnetic methods applied to exploration for deep nickel sulphides in the Leinster area, Western Australia: Exploration Geophysics, 31(2), 222−228.
[21] Xu, L. M., and Nie, Z. P., 2005, A fast forward algorithm for modeling vector electromagnetic scattering from buried dielectric objects: Chinese J. Geophys (in Chinese), 48(1), 209−215.
[22] Ye, H. X., and Jin, Y. Q., 2009, A novel approach of dual GPOF/DCIM for fast computation of the Sommerfeld integrals and electromagnetic scattering from an object partially embedded in dielectric half-space: Acta Phys. Sin. (in Chinese), 58(7), 4579−4589.
[23] Yuan, M. T., and Sarkar, T. K., 2006, A direct discrete complex image method from the closed-form Green's functions in multilayered media: IEEE Transactions on Microwave Theory and Techniques, 54(3), 1025−1032.
[24] Zhang, Z., and Xiao, J., 2001, Inversions of surface and borehole data from large-loop transient electromagnetic system over a 1-D earth: Geophysics, 66(4), 1090−1096.
[25] Zhdanov, M. S., 2009, Geophysical Electromagnetic Theory and Methods: Elsevier Science and Technology, Oxford.
[1] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司