APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 453-464    DOI: 10.1007/s11770-015-0503-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
基于叠前地震AVA反演的天然气水合物沉积物识别
张如伟1,2,李洪奇1,张宝金2,黄捍东1,文鹏飞2
1. 油气资源与探测国家重点实验室,中国石油大学(北京),北京 102249
2. 国土资源部海底矿产资源重点实验室,广州海洋地质调查局,广州 510075
Detection of gas hydrate sediments using prestack seismic AVA inversion
Zhang Ru-Wei1,2, Li Hong-Qi1, Zhang Bao-Jin2, Huang Han-Dong1, and Wen Peng-Fei2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
2. Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China.
 全文: PDF (1234 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震剖面上的似海底反射(BSR)特征一般作为天然气水合物稳定带底界的识别标志,但难以确定天然气水合物沉积物的分布与形态。在本文中,基于AVA正演模拟与角度域共成像道集,采用叠前AVA弹性参数一致性反演方法,应用于南海北部陆坡神狐海域天然气水合物沉积物的预测,获取了天然气水合物沉积物的垂向与横向分布特征及饱和度数据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张如伟
李洪奇
张宝金
黄捍东
文鹏飞
关键词天然气水合物   似海底反射   叠前反演   饱和度     
Abstract: Bottom-simulating reflectors (BSRs) in seismic profile always indicate the bottom of gas hydrate stability zone, but is difficult to determine the distribution and features of gas hydrate sediments (GHS). In this study, based on AVA forward modeling and angle-domain common-image gathers  we use prestack AVA parameters consistency inversion in predicting gas hydrate sediments in the Shenhu area at northern slope of South China Sea, and obtain the vertical and lateral features and saturation of GHS.
Key wordsGas hydrate   BSR   Prestack inversion   saturation   
收稿日期: 2014-10-23;
引用本文:   
张如伟,李洪奇,张宝金等. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
Zhang Ru-Wei,Li Hong-Qi,Zhang Bao-Jin et al. Detection of gas hydrate sediments using prestack seismic AVA inversion[J]. APPLIED GEOPHYSICS, 2015, 12(3): 453-464.
 
[1] Chen, M. A. P., Riedel, M., Hyndman, R. D., and Dosso, S. E., 2007, AVO inversion of BSRs in marine gas hydrate studies: Geophysics, 72(2), C31−C43.
[2] Ecker, C., Dvorkin, J., and Nur, A. M., 1998, Sediments with gas hydrates: Internal structure from seismic AVO: Geophysics, 63(5), 1659-1669.
[3] Ecker, C., Dvorkin, J., and Nur, A. M., 2000, Estimating the amount of gas hydrate and free gas from marine seismic data: Geophysics, 65(2), 565−573.
[4] Gong, Y. H., Yang, S. X., Wang, H. B., Liang, J. Q., Guo, Y. Q., Wu, S. G., and Liu, G. H., 2009, Gas hydrate reservoir characteristics of Shenhu area, north slope of the South China Sea: Geoscience (in Chinese), 23(2), 210-216.
[5] Gong, Y. H., Zhang, G. X., and Guo, Y. Q., 2010, Prospect of gas hydrate resources in the area to southwest Shen-hu of northern South China Sea: Marine Geology & Quaternary Geology (in Chinese), 33(2), 97-104.
[6] He, J. X., Liu, H. L., Yao, Y. J., Zhang, X. H., and Luan, X. W., 2008, Petroleum geology and resource potential of the northern edge basin in the South China Sea: Petroleum Industry Press, China, 1-4.
[7] Helgerud, M. B., Dvorkin, J., Nur, A., Sakai, A., Collett, T., 1999, Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling: Geophysical Research Letters, 26(13), 2021-2024.
[8] Huang, H. D., Zhang, R. W., Shen, G. Q., Guo, F., and Wang, J. P., 2011, Study of prestack elastic parameter consistency inversion methods: Applied Geophysics, 8(4), 311-318.
[9] Huang, H. D., Wang, Y. C., Guo, F., Zhang, S., Ji, Y. Z., and Liu, C. H., 2015, Zoeppritz equation-based prestack inversion and its application in fluid identification: Applied Geophysics, 12(2), 199-211.
[10] Jin, Q. H., Zhang, G. X., and Yang, M. Z., 2006, Introduction to gas hydrate resource: Science Press, China, 2-36.
[11] Kuang, Z. G., and Guo, Y. Q., 2011, The sedimentary facies and gas hydrate accumulation models since Neogene of Shenhu Sea area, Northern South China Sea: Earth Science-J. China University of Geosciences (in Chinese), 36(5), 915-920.
[12] Lee, M. W., Hutchinson, D. R., Collet, T. S., and Dillon, W. P., 1996, Seismic velocities for hydrate-bearing sediments using a weighted equation: J. Geophys. Res, 101, 20347-20358.
[13] Lee, M. W., 2002, Biot-Gassmann theory for velocities of gas hydrate-bearing sediments: Geophysics. 67(6), 1711-1719.
[14] Lee, M. W., and Waite, W. F., 2008, Estimating pore-space gas hydrate saturations from well log acoustic data: Geochemistry Geophysics Geosystems, 9(7).
[15] Lee, M. W., and Collett, T. S., 2012, Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well: Marine and Petroleum Geology, 34, 62-71.
[16] Lee, M. W., Collett, T. S., and Lewis, K. A., 2012, Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos Canyon 21 B well: Marine and Petroleum Geology, 34, 85-95.
[17] Lee, M. W., and Collett, T. S., 2013, Characteristics and interpretation of fracture-filled gas hydrate - An example from the Ulleung Basin, East Sea of Korea: Marine and Petroleum Geology, 47, 168-181.
[18] Lee, M. W., and Collett, T. S., 2013, Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea: Marine and Petroleum Geology, 47, 195-203.
[19] Lei, X. M., Zhang, G. X., and Zeng, Y., 2009, Geological factors of the formation and distribution of natural gas hydrate in the north of Shenhu area, South China Sea: Marine Geology Letters (in Chinese), 25(5), 1-5.
[20] Li, C.H., Zhao, Q., Xu, H.J., Feng. K., and Liu, X.W., 2014, Relation between relative permeability and hydrate saturation in Shenhu area, South China Sea: Applied Geophysics, 11(2), 207-214.
[21] Li, W., Yu, X. H., Zeng, X. M., Wang, J. Z., and Sang, X., 2013, Study of Neocene seismic and sedimentary faces in the hydrate survey area of Shenhu region on the north margin of South China Sea: Marine Geology Frontiers(in Chinese), 29(1), 17-26.
[22] Liang, J., Wang, M.J., Lu, J.A., Liang, J.Q., Wang, H.B., and Kuang, Z.G., 2013, Characteristics of sonic and seismic velocities of gas hydrate sediments in the Shenhu area, northern South China Sea: Natural Gas Industry (in Chinese), 33(7), 29-35.
[23] Liang, Y. X., Zeng, J. H., Guo, Y. Q., and Kuang, Z. G., 2013, Analysis of natural gas hydrate accumulation conditions of Shenhu prospect: Geoscience (in Chinese), 27(2), 425-434.
[24] Liu, C. L., 2011, Unconventional Oil and Gas resource: Science Press, China, 223.
[25] Lu, S. M., and McMechan, G. A., 2004, Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas: Geophysics, 69(1), 164-179.
[26] Ma, Z. T., Gen, J. H., Dong, L. G., and Song, H. B., 2002, Study on seismic identification of marine gas hydrates: Marine Geology & Quaternary Geology (in Chinese), 22(1), 1-8.
[27] Pecher, I. A., 1996, Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion: Earth Planet. Sci. Lett., 139, 459-469.
[28] Riedel, M., Bellefleur, G., Mair, S., Brent, T. A., and Dallimore, S. R., 2009, Acoustic impedance inversion and seismic reflection continuity analysis for delineating gas hydrate resources near the Mallik research sites, Mackenzie Delta, Northwest Territories, Canada: Geophysics, 74(5), B125-B137.
[29] Riedel, M., and Shankar, M., 2012, Combining impedance inversion and seismic similarity for robust gas hydrate concentration assessments e A case study from the Krishna-Godavari basin, concentration assessments e A case study from the KrishnaeGodavari basin: Marine and Petroleum Geology, 36, 35-49.
[30] Singh, S. C., Minshull, T. A., and Spence, G. D., 1993, Velocity structure of a gas hydrate reflector. Science: Geophysics, 260, 204-207.
[31] Song, H. B., Matsubayashi, O., and Kuramoto, S., 2003a, Full Waveform inversion of gas hydrate bottom simulating reflector: Chinese Journal of Geophysics (in Chinese), 46(1), 42-46.
[32] Song, H. B., Jiang, W. W., and Zhang, L., 2003b, Geophysical researches on marine gas hydrates (IV): double bottom simulating reflections: Progress in Geophysics (in Chinese), 18(3), 497-502.
[33] Sun, L. T., Chen, C. M., and Sun, Z., 2005, Physical simulation of tectonic evolution and hydrocarbon generation of Baiyu Sag in Pearl River Mouth Basin: Compilation papers of 2005 Annual Meeting of CSO, China, 354-362.
[34] Whitcombe, D. N.,Connolly, P. A., and Reagan, R. L., 2000, Extended elastic impedance for fluid and lithology prediction: 70th SEG Annual Meeting, Expanded Abstracts, 138-141.
[35] Xia, G. Y., Sen, M. K., and Stoffa, P. L., 2000, Mapping of elastic properties of gas hydrates in the Carolina trough by waveform inversion: Geophysics, 65,735-744.
[36] Yang, J. J., He, B. S., and Zhang, J. Z., 2014, Multicomponent seismic forward modeling of gas hydrates beneath the seafloor: Applied Geophysics, 11(4), 418-428.
[37] Yu, X. H., and Zhang, Z. J., 2005, Characteristics of Neocene depositional systems on the northern continental slope of the South China Sea and their relationships with gas hydrate: Geology in China (in Chinese), 32(2), 470-476.
[38] Yuan, T., Nahar, K.S., and Roop, C., 1998, Marine gas hydrate: Seismic observations of bottom simulating reflectors off the west coast of Canada and the east of India: Geo-horizons, 3(1), 235-239.
[39] Zeng, X. M., Yu, X. H., Wang, J. Z., Kuang, Z. G., 2013, Controlling factors of natural gas hydrate in the north of Shenhu area, South China Sea: Marine Geology Frontiers(in Chinese), 29(10), 31-40.
[40] Zhang, H. T., Zhang, H. Q., and Zhu, Y. H., 2007, Research status and progress of gas hydrate in China: Geology in China (in Chinese), 34(6), 953-961.
[41] Zhang, R. W., Zhang, B. J., Huang, H. D., and Xu, H.N., 2011, AVA characteristics of gas hydrate bearing sediments: Oil Geophysical Prospecting (in Chinese), 46(4), 634-639.
[42] Zhao, Q., Deng, K. J., and Liu, X. W., 2011, A simulation study of formation permeability as a function of methane hydrate concentration: Applied Geophysics, 8(2), 101-109.
[43] Zillmer, M., Flueh, E. R., and Petersen, J., 2005, Seismic investigation of a bottom simulating reflector and quantification of gas hydrate in the Black Sea: Geophys. J. Int., 161, 662-678.
[44] Zillmer, M., 2006, A method for determining gas-hydrate or free-gas saturation of porous media from seismic measurements: Geophysics, 71(3), N21-N32.
[1] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[2] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[3] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[4] 马劲风,李琳,王浩璠,谭明友,崔世凌,张云银,曲志鹏,贾凌云,张树海. CO2地质封存地球物理监测技术[J]. 应用地球物理, 2016, 13(2): 288-306.
[5] 曹呈浩,张宏兵,潘益鑫,滕新保. 中观局域流过渡频率及其与衰减峰值频率的联系研究[J]. 应用地球物理, 2016, 13(1): 156-165.
[6] 王康宁, 孙赞东, 董宁. 基于各向异性MRF-MAP的叠前反演及在页岩气甜点识别中的应用[J]. 应用地球物理, 2015, 12(4): 533-544.
[7] 沙志彬, 张明, 张光学, 梁金强, 苏丕波. 利用四分量OBS数据揭示南海北部陆坡天然气水合物分布及速度特征[J]. 应用地球物理, 2015, 12(4): 555-563.
[8] 黄捍东, 王彦超, 郭飞, 张生, 纪永祯, 刘承汉. 基于Zoeppritz方程的叠前地震反演方法研究及其在流体识别中的应用[J]. 应用地球物理, 2015, 12(2): 199-211.
[9] 杨佳佳, 何兵寿, 张建中. 海底天然气水合物OBS多分量地震正演模拟[J]. 应用地球物理, 2014, 11(4): 418-428.
[10] 骆春妹, 王尚旭, 袁三一. 子波相位不准对叠前波形反演的影响[J]. 应用地球物理, 2014, 11(4): 479-488.
[11] 孙文杰, 李宁, 武宏亮, 王克文, 张宫. 孔洞型储层测井饱和度解释方程的确定及应用[J]. 应用地球物理, 2014, 11(3): 257-268.
[12] 李传辉, 赵倩, 徐红军, 冯凯, 刘学伟. 基于核磁共振测量的南海神狐海域天然气水合物对地层渗透率的影响研究[J]. 应用地球物理, 2014, 11(2): 207-214.
[13] 李雄炎, 秦瑞宝, 刘春成, 毛志强. 基于岩石导电效率建立碳酸盐岩储层饱和度的计算方法[J]. 应用地球物理, 2014, 11(2): 215-222.
[14] 何涛, 李洪林, 邹长春. BSR热流的三维地貌校正和流体汇聚探测[J]. 应用地球物理, 2014, 11(2): 197-206.
[15] 于豪, 巴晶, Carcione Jose, 李劲松, 唐刚, 张兴阳, 何新贞, 欧阳华. 非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测[J]. 应用地球物理, 2014, 11(1): 9-22.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司