APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 343-352    DOI: 10.1007/s11770-015-0509-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一种新的地震属性:基于灰色-消除趋势波动法的分形标度指数
黄亚平1,耿建华2,郭彤楼3
1. 中国矿业大学 资源与地球科学学院,江苏徐州 221116
2. 同济大学 海洋地质国家重点实验室 海洋与地球科学学院,上海 200092
3. 中国石化勘探分公司,成都 610041
New seismic attribute: Fractal scaling exponent based on gray detrended fluctuation analysis
Huang Ya-Ping1, Geng Jian-Hua2, and Guo Tong-Lou3
1. The School of Resource and Geosciences, China University of Mining and Technology, Xuzhou 221116, China.
2. State Key Laboratory of Marine Geology, School of Ocean and Earth science, Tongji University, Shanghai 200092, China.
3. Exploration Branch Company of China Petroleum and Chemical Corporation, Chengdu 610041, China.
 全文: PDF (1098 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震属性技术广泛应用于油气勘探与开发,但因地震波在地球介质中传播的复杂性、地震数据采集观测系统的局限性以及噪音干扰等原因,地震属性用于地震资料解释仍然具有很大的不确定性,而地震属性的抗噪性直接影响着地震解释的可信度。灰色理论用于处理时间序列信号具有弱化随机性、增加规律性的能力。消除趋势波动法能有效地消除数据中的各种不确定性未知趋势。本文将灰色理论和消除趋势波动法相结合,提出了基于灰色消除趋势波动法计算分形标度指数地震属性的新方法。论文以Weierstrass函数产生的非线性时间序列以及实际地震资料增加随机噪音为例,讨论了灰色-消除趋势波动法计算分形标度指数的抗噪能力,研究表明新方法计算的分形标度指数具有良好的抗噪能力。将该方法应用于四川东北部地区三维地震叠后偏移数据,与传统的消除趋势波动法提取的分形标度指数地震属性进行对比,结果表明新方法计算的分形标度指数地震属性与已知沉积相的分布基本一致。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄亚平
耿建华
郭彤楼
关键词地震属性   灰色理论   消除趋势波动法   分形标度指数     
Abstract: Seismic attributes have been widely used in oil and gas exploration and development. However, owing to the complexity of seismic wave propagation in subsurface media, the limitations of the seismic data acquisition system, and noise interference, seismic attributes for seismic data interpretation have uncertainties. Especially, the antinoise ability of seismic attributes directly affects the reliability of seismic interpretations. Gray system theory is used in time series to minimize data randomness and increase data regularity. Detrended fluctuation analysis (DFA) can effectively reduce extrinsic data tendencies. In this study, by combining gray system theory and DFA, we propose a new method called gray detrended fluctuation analysis (GDFA) for calculating the fractal scaling exponent. We consider nonlinear time series generated by the Weierstrass function and add random noise to actual seismic data. Moreover, we discuss the antinoise ability of the fractal scaling exponent based on GDFA. The results suggest that the fractal scaling exponent calculated using the proposed method has good antinoise ability. We apply the proposed method to 3D poststack migration seismic data from southern China and compare fractal scaling exponents calculated using DFA and GDFA. The results suggest that the use of the GDFA-calculated fractal scaling exponent as a seismic attribute can match the known distribution of sedimentary facies.
Key wordsSeismic attribute   gray system theory   detrended fluctuation analysis   fractal scaling exponent   
收稿日期: 2014-06-20;
基金资助:

本研究由中央高校基本科研业务费专项资金资助(编号:2012QNA62)、江苏省自然科学基金(编号:BK20130201)、中国博士后科学基金(编号:2014M551703)和国家自然科学基金(编号:41374140)联合资助。

引用本文:   
黄亚平,耿建华,郭彤楼. 一种新的地震属性:基于灰色-消除趋势波动法的分形标度指数[J]. 应用地球物理, 2015, 12(3): 343-352.
Huang Ya-Ping,Geng Jian-Hua,Guo Tong-Lou. New seismic attribute: Fractal scaling exponent based on gray detrended fluctuation analysis[J]. APPLIED GEOPHYSICS, 2015, 12(3): 343-352.
 
[1] Almoqbel, A. M., and Wang, Y., 2010, Carbonate reservoir characterization based on gray prediction theory: 72nd EAGE Conference and Exhibition, Expanded Abstracts, 116−121.
[2] Avseth, P., Veggeland, T., and Horn, F., 2014, Seismic screening for hydrocarbon prospects using rock-physics attributes: The Leading Edge, 33(3), 266−274.
[3] Barnes, A. E., 2007, Redundant and useless seismic attributes: Geophysics, 72(3), 33−38.
[4] Chopra, S., and Marfurt, K. J., 2005, Seismic attributes-A historical perspective: Geophysics, 70, 3SO−28SO.
[5] Chopra, S., and Marfurt, K. J., 2008, Emerging and future trends in seismic attributes: The leading Edge, 27(3), 298−318.
[6] De, M. P., Consolini, G., and Tozzi, R., 2015, Magnetic field fluctuation features at Swarm's altitude: A fractal approach: Geophysics Research Letters, 42(9), 3100−3105.
[7] Deng, J. L., 1987, The primary methods of grey system theory: Huazhong Institute of Technology Press, Wuhan, 1−20.
[8] —2002, Grey theory: Huangzhong University of Science and Technology Press, Wuhan, 1−15.
[9] Dou, X. Y., Han, L. G., Wang, E. L., Dong, X. H., Yang, Q., and Yan, G. H., 2014, A fracture enhancement method based on the histogram equalization of eigenstructure-based coherence: Applied Geophysics, 11(2), 179−185.
[10] Falconer, K. J., 2003, Fractal geometry: Mathematical foundations and applications: John Wiley & Sons, Chichester, 20−55.
[11] Gao, D. L., 2012, Implications of the Fresnel-zone texture for seismic amplitude interpretation: Geophysics, 77(4), O35−O44.
[12] Gao, D. L., and Di, H. B., 2015, Extreme curvature and extreme flexure analysis for fracture characterization from 3D seismic data: New analytical algorithms and geologic implications: Geophysics, 80(2), IM11−IM19.
[13] Gong, Z. J., and Geng, J. H., 2013, Reservoir parameter prediction based on co-kriging combined with grey neural network model: 29th Annual Meeting of the Chinese Geophysics,785.
[14] Gupta, N., Sarkar, S., and Marfurt, K. J., 2013, Seismic attribute driven integrated characterization of the Woodford shale in west-central Oklahoma: Interpretation, 1(2), SB85−SB96.
[15] Hewett, T. A., 1986, Fractal distribution of reservoir heterogeneity and their influence on fluid transport: 61st Society of Petroleum Engineers Annual Technical Conference and Exhibition, SPE 15386.
[16] Huang, Y. P., Dong, S. H., and Geng, J. H., 2009, Ordovician limestone aquosity prediction using nonlinear seismic attributes: Case from the Xutuan coal mine: Applied Geophysics, 6(4), 359−366.
[17] Li, C. F., 2003, Rescaled-range and power spectrum analyses on well-logging data: Geophysical Journal International, 153(1), 201−212.
[18] Li, C. F., and Liner, C., 2005, Singularity exponent from wavelet-based multi-scale analysis: A new seismic attribute: Chinese Journal of Geophysics (in Chinese), 48(4), 882−888.
[19] Liu, S. F., and Lin, Y., 2006, Grey systems: theory and application: Springer-Verlag London Ltd, London, 1−78.
[20] Marfurt, K. J., Kirlin, R. L., Farmer, S. L., and Bahorich, M. S., 1998, 3-D seismic attributes using a semblance-based coherency algorithm: Geophysics, 63(4), 1150−1165.
[21] Peng, C. K., Havlin S., Stanley, H. E., and Goldberger, A. L., 1995, Quantification of scaling exponents and crossover phenomena in non-stationary heartbeat time series: Chaos, 5(1), 82−87.
[22] Rong, Y. M., Wang, Q., Ding, X., and Huang, Q. H., 2012, Non-uniform scaling behavior in ultra-low-Frequency(ULF) geomagnetic signals possibly associated with the 2011 M9.0 Tohoku earthquake: Chinese Journal of Geophysics(in Chinese), 55(11), 3709−3717.
[23] Srivastava, R. P., and Sen, M. K., 2009, Fractal-based stochastic inversion of poststack seismic data using very fast simulated annealing: Journal of Geophysics and Engineering, 6(4), 412−425.
[24] Sun, X., Wu, Z. Q., and Huang, Y., 2003, The fractal principle and its application: University of Science and Technology China press, Hefei, 105−106.
[25] Wen, X. T., He, Z. H., and Huang, D. J., 2009, Reservoir detection based on EMD and correlation dimension: Applied Geophysics, 6(1), 70−76.
[26] Wu, G. P., AO, M. S., Wu, Y. Q., Xu, H. Y., and Wang, X. M., 2009, Multi-domain information assessment of oil and gas traps based on cloud model and grey relational analysis: Journal of Southwest Petroleum University, 31(5), 1−5.
[27] Wu, L. F., Liu, S. F., Yao, L. G., Yan, S. L., and Liu, D. L., 2013, Grey system model with the fractional order accumulation: Communications in Nonlinear Science and Numerical Simulation, 18(7), 1775−1785.
[28] Yang, R. Z., Zhao, Z. G., Peng, W. J., Gu, Y. B., Wang, Z. G., and Zhuan, X.Q., 2013, Integrated application of 3D seismic and microseismic data in the development of tight gas reservoirs: Applied Geophysics, 10(2), 157−169.
[1] 罗伟平,李洪奇,石宁. 半监督最小二乘支持向量机的研究及其在海上油田储层预测中的应用[J]. 应用地球物理, 2016, 13(2): 406-415.
[2] 祁雪梅, 张绍聪. 基于D-S证据理论的地震多属性融合方法在煤层气富集区预测中的应用[J]. 应用地球物理, 2012, 9(1): 80-86.
[3] 黄亚平, 耿建华, 钟广法, 郭彤楼, 蒲勇, 丁孔芸, 麻纪强. 基于Hilbert-Huang变换的地震瞬时属性提取方法及应用[J]. 应用地球物理, 2011, 8(2): 125-133.
[4] 黄亚平, 董守华, 耿建华. 非线性地震属性在煤矿奥陶系灰岩含水性预测中的应用研究[J]. 应用地球物理, 2009, 6(4): 385-392.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司