APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 405-417    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
多深度倾斜气枪震源消除鬼波的理论模拟研究
沈洪垒1,2,Elboth Thomas2,田钢1,林智3
1. 浙江大学地球科学系,杭州 310027
2. CGG, Oslo, 0216 Norway
3. 浙江大学数学系,杭州 310027
Modeling of multi-depth slanted airgun source for deghosting
Shen Hong-Lei1,2, Elboth Thomas2, Tian Gang1, and Lin Zhi3
1. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
2. CGG, 0216, Oslo, Norway.
3. Department of Mathmatics, Zhejiang University, Hangzhou 310027, China.
 全文: PDF (2857 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文提出利用在不同深度处倾斜放置气枪子阵,对不同深度处单枪或相干枪延时激发的方法压制震源端鬼波,从而改善震源子波分辨率。采用延时激发的方法可以构造同相叠加的首波以及被相对压制掉的鬼波。为了合理评价倾斜震源对于鬼波压制的效果,提出了以实际子波和不受鬼波影响的期望子波频谱之间的归一化平方误差为标准,以深度间隔、气枪组合次序、子阵数目等为变量的最优化问题。针对680cu.in经典枪阵研究表明,在综合考虑去鬼波效果和野外施工可操作性,相邻单枪之间的深度间隔为1m-1.5为较为合理的选择。多个子阵在进行组合时,需要对组合效果进行前期模拟确定最佳深度组合,过多的子阵数目由于会引入大量陷波频率,反而会影响鬼波压制效果,在本次实例研究中,2-3个子阵是较为合理的选择。气枪组合次序会一定程度上影响鬼波压制效果,但不同次序结果差异可以通过简单匹配滤波消除。方向性对比表明多深度倾斜气枪震源能够有效地补偿消除陷波效应的影响,同时改善能量传播的稳定性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈洪垒
Elboth Thomas
田钢
林智
关键词鬼波   倾斜震源   Johnson模型     
Abstract: To obtain high-resolution of the subsurface structure, we  modeled multi-depth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can build constructive primaries and destructive ghosts. To evaluate the attenuation of ghosts, the normalized squared error of the spectrum of the actual vs the expected signature is computed. We used a typical 680 cu.in airgun string and found via simulations that a depth interval of 1 or 1.5 m between airguns is optimum when considering deghosting performance and operational feasibility. When more subarrays are combined, preliminary simulations are necessary to determine the optimum depth combination. The frequency notches introduced by the excess use of subarrays may negatively affect the deghosting performance. Two or three slanted subarrays can be combined to remove the ghost effect. The sequence combination may partly affect deghosting but this can be eliminated by matched filtering. Directivity comparison shows that a multi-depth slanted source can significantly attenuate the notches and widen the energy transmission stability area.
Key wordsdeghost   multi-depth   slanted source   
收稿日期: 2014-04-24;
基金资助:

本研究由国家863项目专题(编号:2013AA064202)和浙江大学海洋学科交叉引导基金(编号:188040+193414Y01)联合资助。

引用本文:   
沈洪垒,Elboth Thomas,田钢等. 多深度倾斜气枪震源消除鬼波的理论模拟研究[J]. 应用地球物理, 2014, 11(4): 405-417.
SHEN Hong-Lei,Elboth Thomas,TIAN Gang et al. Modeling of multi-depth slanted airgun source for deghosting[J]. APPLIED GEOPHYSICS, 2014, 11(4): 405-417.
 
[1] Cambois, G., Long, A., Parkes, G., Lundsten, T., Mattsson, A., and Fromyr, E., 2009, Multi-level airgun array: a simple and effective way to enhance the low frequency content of marine seismic data: 79th Ann.Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 152-156.
[2] Christie, P. A. F., Lunnon, Z. C., White, R. S., Kusznir N., Roberts, A. W., Parkin, C., Smith, L., Healy, D., Hurst, N., Tymms, V., Chappell, A., and Fletcher, R., 2006, iSIMM experience with peak- and bubble- tuned sources for generating low frequencies: 68th EAGE Annual International Meeting, Expanded Abstracts, A034.
[3] Egan, M., George, K., Kasseh, E., and Moldoveanu, N., 2007, Full deghosting of OBC data with over/under source acquisition: 77th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 31-35.
[4] Halliday, D. F., 2013, Source-side deghosting: A comparison of approaches. 83rd Ann.Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts: 67-71.
[5] Hegna, S., and Parkes, G. E., 2010, Method for acquiring and processing marine seismic data to extract and constructively use the up-going and down-going wave-fields emitted by the source(s). EUO patent, No. EP2259091 A2.
[6] Hegna, S., and Parkes, G., 2011, The low frequency output of marine air-gun arrays: 81st Ann.Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 77-81.
[7] Hopperstad, J. F., Laws, R., and Kragh, E., 2008a, Fundamental principles of isotropic marine source design: 70th EAGEAnnual International Meeting, Expanded Abstracts, B025.
[8] Hopperstad, J. F., Laws, R., and Kragh, E., 2008b, Where is the center of a multi-depth marine source array?: 78th Ann.Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 40-44.
[9] Johnson, D. T., 1994. Understanding air-gun bubble behavior: Geophysics, 59, 1729-1734.
[10] Landrø, M., 1992, Modelling of GI gun signatures: Geophysical Prospecting, 40, 721-747.
[11] Laws, R. M., Hatton, L., and Haartsen, M., 1990, Computer modelling of clustered air-guns: First Break, 18(9), 331-338.
[12] Li, X.. Wang, J., Zhang, J., and Du, X., 2013. Some seismic acquisition designs and key processing techniques and their testing effects in the deep water areas, South China Sea: China Offshore Oil and Gas (in Chinese), 25(6), 8-14.
[13] Moldoveanu, N., 2000, Vertical source array in marine seismic exploration. 70th Ann.Internat. Mtg, Soc. Expl. Geophys. , Expanded Abstracts, 53-56.
[14] Parkes, G. E., and Hegna, S., 2011, How to influence the low frequency output of marine air-gun arrays: 73rd EAGE Annual International Conference and Exhibition, H012.
[15] Payen, T., and Dowle, R., 2012, Compact broadband source and method: United States patent application, No. 2012/0287752 A1.
[16] Posthumus, B., 1993, Deghosting of twin streamer configuration. Geophysical Prospecting 41, 267-286.
[17] Quan, H., Chen, X., Wei, X., Guo, Y., Luo, M., and Song, X., 2011, An analysis of the time-lapse explosion of airgun array in marine seismic. Oil Geophysical Prospecting (in Chinese), 46(4), 513-516.
[18] Robertsson, J. O. A., Halliday, D., Manen, D. -J. van, Vasconcelos, I., Laws, R., Özdemir, K., and Grønaas, H., 2012, Full-wavefield, towed-marine seismic acquisition and applications. 74th EAGE Annual International Conference and Exhibition, Z015.
[19] Robertsson, J. O. A., Manen, D. -J. van., Halliday. D., and Law, R., 2008, Seismic data acquisition and source-side derivatives generation and applic:. Geophysical Prospecting, 24, 773-787.
[20] Shen, H., Elboth, T., Tian, G., Warszawski, J., and Lilja, D., 2014, Theoretical study on multi-level source design: Geophysical Prospecting, 6, 1337-1352.
[21] Shock, L., 1950, The progressive detonation of multiple charges in a single seismic shot. Geophysics 15, 208-218.
[22] Smith, G. C., 1984, Three-dimensional air gun arrays: 54th Ann.Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 282-285.
[23] Sønneland, L., and Berg, E., 1985, A new method for separating wave fields into up- and down-going components: 47th EAGE Annual International Meeting, Extended Abstracts, B-46.
[24] Sønneland, L., Berg, E., Eidsvig, P., Haugen, B. F., and Vestby, J., 1986, 2D deghosting using vertical receiver arrays: 56th Ann.Internat. Mtg, Soc. Expl. Geophys., Expanded Abstract, 516-519.
[25] Ziolkowski, A., 1970, A method for calculating the output pressure waveform from an air gun: Geophys. J. Roy. Astr. Soc. 21, 137-161.
[26] Ziolkowski, A., 1998, Measurement of air-gun bubble oscillations: Geophysics, 63, 2009-2024.
[27] Ziolkowski, A., Parkes, G., Hatton, L., and Haugland, T., 1982, The signature of an air-gun array-Computation from near-field measurements including interactions: Geophysics, 47, 1413-1421.
[1] 张兴岩, 潘冬明, 史文英, 方中于, 但志伟, 张立霞. 基于粗糙海面反射系数求取的τ-p域拖缆鬼波压制技术[J]. 应用地球物理, 2015, 12(4): 573-584.
[2] 凌云, 韩立国, 张益明. 地震波在孔隙介质中低频衰减现象的粘弹性特征分析及近似[J]. 应用地球物理, 2014, 11(4): 355-363.
[3] 赫建伟, 陆文凯, 李钟晓. 一种自适应上下缆地震数据合并技术[J]. 应用地球物理, 2013, 10(4): 469-476.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司