APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 395-404    DOI: 10.1007/s11770-014-0457-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于反演基质矿物模量和多约束条件的双相介质AVO正演方法
林凯1,贺振华1,熊晓军1,贺锡雷1,曹俊兴1,薛雅娟2
1. 成都理工大学地球探测与信息技术教育部重点实验室,成都 610059
2. 成都信息工程学院,通信工程学院,成都 610225
AVO forwarding modeling in two-phase media: multiconstrained matrix mineral modulus inversion
Lin Kai1, He Zhen-Hua1, Xiong Xiao-Jun1, He Xi-Lei1, Cao Jun-Xing1, and Xue Ya-Juan2
1. Key Lab of Earth Exploration & Information Techniques of Ministry of Education, Chengdu University of Technology, Chengdu 610059, China.
2. College of Communication Engineering, Chengdu University of Information Technology, Chengdu 610225, China.
 全文: PDF (738 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于双相介质理论的AVO正演技术是储层性质描述和流体预测的有效技术手段之一,但是输入参数中基质矿物模量的准确性和双相介质模型的的合理性极大地影响双相介质AVO正演效果。因此,本文采用基于流体因子的基质矿物模量反演方法,自适应反演基质矿物体积模量。引入具有岩石物理意义的多约束条件,使得流体替换技术制作的双相介质模型具有岩石物理意义。保证获得的双相介质AVO特征反映实际地层响应,真实可靠。通过不同岩性岩样的对比分析,说明反演方法的优越性和准确性。同时LH地区实际资料应用,获得孔隙度和流体饱和度等重要岩性参数变化时双相介质AVO特征,特别是不同储层孔隙度在同一入射角对应快纵波和横波反射系数幅值的大小差异和突变角差异是分辨储层孔隙度大小的依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
林凯
贺振华
熊晓军
贺锡雷
曹俊兴
薛雅娟
关键词基质矿物模量   双相介质   AVO正演     
Abstract: AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the rationality of the two-phase medium model. We used the matrix mineral bulk modulus inversion method and multiple constraints to obtain a two-phase medium model with physical meaning. The proposed method guarantees the reliability of the obtained AVO characteristicsin two-phase media. By the comparative analysis of different lithology of the core sample, the advantages and accuracy of the inversion method can be illustrated. Also, the inversion method can be applied in LH area, and the AVO characteristics can be obtained when the porosity, fluid saturation, and other important lithology parameters are changed. In particular, the reflection coefficient amplitude difference between the fast P wave and S wave as a function of porosity at the same incidence angle, and the difference in the incidence angle threshold can be used to decipher porosity.
Key wordsMatrix mineral bulk modulus   two-phase media   AVO forward modeling   
收稿日期: 2013-11-18;
基金资助:

本研究由国家自然科学基金项目(编号:41404101、41174114、41274130和41404102)联合资助。

引用本文:   
林凯,贺振华,熊晓军等. 基于反演基质矿物模量和多约束条件的双相介质AVO正演方法[J]. 应用地球物理, 2014, 11(4): 395-404.
LIN Kai,HE Zhen-Hua,XIONG Xiao-Jun et al. AVO forwarding modeling in two-phase media: multiconstrained matrix mineral modulus inversion[J]. APPLIED GEOPHYSICS, 2014, 11(4): 395-404.
 
[1] Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media: Acoustical Society of America, 68, 1809-1831.
[2] Biot, M. A., 1956, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range: Journal of the Acoustical Society of America, 28(2), 168-178.
[3] Gassmann, F., 1951, Uber die elastizitat poroser medien: Vier Der Natur Gesellschaft, 96, 1-23.
[4] Greertsma, J., and Smith, D. C., 1961, Some aspects of elastic wave propagation in fluid saturated porous solids: Geophysics, 33(2), 169-181.
[5] Keys, R. G., and Xu, S. Y., 2002, An approximation for the Xu-White velocity model: Geophysics, 67(5), 1406-1414.
[6] Krief, M., Garat, J., Stellingwerff, J. et al., 1990, A petrohysical interpretation using the velocities of P and S waves (full-waveform sonic): The Log Analyst, 31(11), 355-369.
[7] Lin, K., Xiong, X. J., Yang, X. et al., 2011,Self-adapting extraction of matrix mineral bulk modulus and verification of fluid substitution: Applied Geophysics, 8 (2), 110-116.
[8] Mavko, G., and Mukerji, T., 1995,Seismic Pore space compressibility and Gassmann’s relation: Geophysics, 60, 1743-1749.
[9] Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook: Tools for seismic analysis in porous media: Cambridge University Press, London, 307-309.
[10] Mou, Y. G., 1996, Reservoir Geophysics: Petroleum Industry Press, Beijing.
[11] Nur, A. M., and Wang, Z., 1989, Seismic and acoustic velocities in reservoir rocks: Theoreticalandmodelstudies: SEG Geophysics Reprint Series, Vol.2, 1-35.
[12] Plona, T. J., 1980, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies: Applied Physics Letters, 36, 259-261.
[13] Qiao, W. X., Wang, N., and Yan, Z. P., 1992, Reflection and transmission of acoustic wave at a porous solid/ porous solid interface: Chinese Journal Geophysics, 35(2), 242-247.
[14] Russell, B. H., Hedlin, K., Hilterman, F. J., and Lines, L. R., 2003, Fluid-property discrimination with AVO: A biot-Gas ssmann perspective: Geophysics, 68(1), 29-39.
[15] Sa, L. M., 2003, Reservoir inversion hydrocarbon detection theory and its application: PhD thesis, Graduate University of Chinese Academy of Sciences, Beijing.
[16] Wang, S. X., 1990, Numerical solutions of the finite element method for the elastic wave problem and AVO problems: Petroleum University, Beijing.
[17] Yong, X. S., Ma, H. Z., and Gao, J. H., 2006, A Study of AVO Equation in dual-phase media and parameter simplification: Advances in Earth Science, 21(3), 242-249.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司