APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 355-363    DOI: 10.1007/s11770-014-0464-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
地震波在孔隙介质中低频衰减现象的粘弹性特征分析及近似
凌云1,韩立国1,张益明2
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 中海石油研究中心,北京 100027
Viscoelastic characteristics of low-frequency seismic wave attenuation in porous media
Ling Yun1, Han Li-Guo1, and Zhang Yi-Ming2
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. CNOOC Research Institute, Beijing 100027, China.
 全文: PDF (714 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 由于介观尺度的孔隙流体流动,弹性波传播过孔隙岩层时在地震频段表现出较强的频散和衰减。Johnson理论给出了在任意孔隙形状的条件下,部分气水饱和孔隙介质的理论相速度和品质因子的解析解。本文在Johnson模型的基础上,通过对Q值曲线的低频和高频近似,推导了Q值曲线的近似公式,以及基于孔隙介质基本地球物理参数和孔隙斑块几何形态参数T和比表面积S/V的最大衰减Qmin近似公式。通过与理论值的对比,对Qmin近似公式存在的线性误差进行改正,进一步提高了精度。复杂的斑块形态对最大衰减Qmin和过渡频率ftr的都产生一定影响,且对ftr影响更大。因为数值模拟直接求解介观尺度的Biot孔隙介质方程需要极大的计算量,我们使用Zener模型建立了等效粘弹模型,有效地模拟了地震频带内的衰减和频散现象。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
凌云
韩立国
张益明
关键词介观尺度   Johnson模型   衰减   速度频散   Zener模型     
Abstract: Mesoscopic fluid flow is the major cause of wave attenuation and velocity dispersion at seismic frequencies in porous rocks. The Johnson model provides solutions for the frequency-dependent quality factor and phase velocity in partially saturated porous media with pore patches of arbitrary shapes. We use the Johnson model to derive approximations for the quality factor Q at the high and low frequency limit, and obtain the approximate equation for Qmin based on geophysical and geometric parameters. A more accurate equation for Qmin is obtained after correcting for the linear errors between the exact and approximate Q values. The complexity of the pore patch shape affects the maximum attenuation of Qmin and the transition frequency ftr; furthermore, the effect on ftr is stronger than that on Qmin. Numerical solutions to Biot’s equation are computationally intensive; thus, we build an equivalent viscoelastic model on the basis of the Zener model, which well approximates the wave attenuation and dispersion in porous rocks in the seismic band.
Key wordsMesoscopic scale   johnson model   attenuation   velocity dispersion   zener model   
收稿日期: 2014-07-18;
基金资助:

本研究由国家科技重大专项(编号:2011ZX05025-001-07)资助。

引用本文:   
凌云,韩立国,张益明. 地震波在孔隙介质中低频衰减现象的粘弹性特征分析及近似[J]. 应用地球物理, 2014, 11(4): 355-363.
LING Yun,HAN Li-Guo,ZHANG Yi-Ming. Viscoelastic characteristics of low-frequency seismic wave attenuation in porous media[J]. APPLIED GEOPHYSICS, 2014, 11(4): 355-363.
 
[1] Batzle, M., Han, D., and Hofmann, R., 2006, Fluid mobility and frequency-dependent seismic velocity-Direct measurements: Geophysics, 71(1), N1-N9.
[2] Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range The Journal of the Acoustical Society of America, 28(2), 168-178.
[3] Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher-frequency range: Acoustical Society of America Journal, 28, 179-191.
[4] Carcione, J. M., 2007, Wave fields in real media: theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media: Elsevier.
[5] Carcione, J. M., and Picotti, S., 2006, P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties: Geophysics, 71(3), O1-O8.
[6] Dutta, N. C., and Odé, H., 1979, Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)-Part I: Biot theory: Geophysics, 44(11), 1777-1788.
[7] Hill, R., 1964, Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior: Journal of the Mechanics and Physics of Solids, 12(4), 199-212.
[8] Johnson, D. L., 2001, Theory of frequency dependent acoustics in patchy-saturated porous media: The Journal of the Acoustical Society of America, 110, 682-694.
[9] Müller, T. M., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review: Geophysics, 75(5), 75A147-175A164.
[10] Picotti, S., Carcione, J. M., Germán R. J., and Santos, J. E., 2007, P-wave seismic attenuation by slow-wave diffusion: Numerical experiments in partially saturated rocks: Geophysics, 72(4), N11-N21.
[11] Picotti, S., Carcione, J. M., Rubino, J. G., Santos, J. E., and Cavallini, F., 2010, A viscoelastic representation of wave attenuation in porous media: Computers and Geosciences, 36(1), 44-53.
[12] Pride, S. R., and Berryman, J. G., 2003, Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation: Physical Review E, 68(3), 036603.
[13] Pride, S. R., Berryman, J. G., and Harris, J. M., 2004, Seismic attenuation due to wave-induced flow: Journal of Geophysical Research, 109(B1), B01201.
[14] Quintal, B., Schmalholz, S. M., and Podladchikov, Y. Y., 2008, Low-frequency reflections from a thin layer with high attenuation caused by interlayer flow: Geophysics, 74(1), N15-N23.
[15] Wang, S. X., Zhao, J. G., Li, Z. H., Harris, J. M., and Quan, Y. L., 2012, Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range: Journal of Geophysical Research: Solid Earth, 117(B6), B06203.
[16] White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40(2), 224-232.
[17] White, J. E., Mikhaylova, N. G., and Lyakhovitskiy, F. M., 1976, Low-frequency seismic waves in fluid saturated layered rocks: Physics of the Solid Earth, 11, 654-659.
[18] Wood, A. B., 1955, A Textbook of sound: The physics of vibrations: G. Bell and Sons Ltd., London.
[19] Zhao, J. G., Tang, G. Y., Deng, J. X., Tong, X. L., and Wang, S. X., 2013, Determination of rock acoustic properties at low frequency: A differential acoustical resonance spectroscopy device and its estimation technique: Geophysical Research Letters, 40(12), 2975-2982.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[3] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[4] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[5] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[6] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[7] 王万里,杨午阳,魏新建,何欣. 基于小波分频与径向道变换的联合压制面波方法[J]. 应用地球物理, 2017, 14(1): 96-104.
[8] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[9] 刘学清,王彦春,张贵宾,马胜利,成丽芳,余文武. 叠前FAGVO计算方法及应用[J]. 应用地球物理, 2016, 13(4): 641-648.
[10] 张军华,李军,肖文,谭明友,张云银,崔世凌,曲志鹏. 基于速度频散因子表征的CO2驱地震监测方法[J]. 应用地球物理, 2016, 13(2): 307-314.
[11] Seyyed Ali Fa’al Rastegar, Abdolrahim Javaherian, Naser Keshavarz Farajkhah. 利用改进的共偏移距-共反射面(COCRS)叠加压制地滚波?[J]. 应用地球物理, 2016, 13(2): 353-363.
[12] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[13] 安勇. 叠前地震衰减各向异性的裂缝预测方法及应用[J]. 应用地球物理, 2015, 12(3): 432-440.
[14] 郭智奇, 刘喜武, 符伟, 李向阳. 粘弹各向异性反射体模型方位地震AVO模拟及分析[J]. 应用地球物理, 2015, 12(3): 441-452.
[15] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司