APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (2): 158-163    DOI: 10.1007/s11770-011-0280-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
地球AK135模型中P震相的有限频走时灵敏度算核的计算
张风雪1,吴庆举1,潘佳铁1,张广成1,冯强强1
1. 中国地震局地球物理研究所,北京 100081
The computation of a finite-frequency travel time sensitive kernel for P-waves in the AK135 earth model
Zhang Feng-Xue1, Wu Qing-Ju1, Pan Jia-Tie1, Zhang Guang-Cheng1, and Feng Qiang-Qiang1
1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China.
 全文: PDF (571 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 有限频走时层析成像是近年发展起来的一种新方法,这种新方法的一个主要过程是走时灵敏度算核的计算。求解灵敏度算核要多次用到同一散射点的走时,多次地求解同一走时是相当耗时的任务,如果介质为均匀或速度线性变化等简单模型,散射点的走时可以用解析公式快速地求出,从而灵敏度算核的计算耗时相对较少。然而各种地球模型中,介质速度大多为分层模型,从解析公式中得到走时信息就比较繁锁。为了提高计算效率,本文采用查表算法研究地球分层速度模型中的P震相有限频走时灵敏度算核的计算,选用的速度模型是地球AK135模型,用查表算法求解走时,节省了约50%的计算时间。在相同的速度模型下,与已有结果的对比,本文所用的查表算法,能在兼顾精度的前提下,以较小的存储要求换取较高的计算效率,这对提高有限频走时层析成像算法的速度具有一定的参考价值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张风雪
吴庆举
潘佳铁
张广成
冯强强
关键词AK135   有限频   灵敏度算核   P震相     
Abstract: Finite-frequency travel time tomography is a newly developing method. The main procedure in this new method is to compute the traveltime sensitive kernel. The travel time of the same scatterer needs to be used for computing the traveltime sensitive kernel many times. It is a time-consuming task. It is easy and fast to get the travel time from analytic equations in a simple model such as a homogenous or linear velocity media. However, most of the earth models are layered. It is cumbersome to get the travel time from analytic equations. In order to enhance the computation effi ciency, we used the table look-up method to compute the finite-frequency travel time sensitive kernel for P-waves in a layered structure model. We chose the AK135 earth model for the velocity model. The table look-up method saved about 50% of the computation time. We enhanced the computation speed by using the table lookup method in the same velocity model, which was very useful for enhancing the computation effi ciency for the fi nite-f equency travel time tomography.
Key wordsAK135   finite-frequency   sensitive kernel   P-wave   
收稿日期: 2011-01-06;
基金资助:

国家自然科学基金重点项目(编号:90814013)资助。

引用本文:   
张风雪,吴庆举,潘佳铁等. 地球AK135模型中P震相的有限频走时灵敏度算核的计算[J]. 应用地球物理, 2011, 8(2): 158-163.
ZHANG Feng-Xue,WU Qing-Ju,PAN Jia-Tie et al. The computation of a finite-frequency travel time sensitive kernel for P-waves in the AK135 earth model[J]. APPLIED GEOPHYSICS, 2011, 8(2): 158-163.
 
[1] Aki, K., and Lee, W. H. K., 1976, Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes 1. A homogeneous initial model: J. Geophys. Res., 81(23), 4381 ? 4399.
[2] Capdeville, Y., 2005, An efficient Born normal mode method to compute sensitivity kernels and synthetic seismograms in the Earth: Geophys. J. Int., 163, 639 ? 646.
[3] Dahlen, F. A., Hung, S. H., and Nolet, G., 2000, Fréchet kernel for finite-frequency traveltimes -Ⅰ. Theory: Geophys. J. Int., 141, 157 ? 174.
[4] Huang, J. L., and Zhao, D. P., 2004, Crustal heterogeneity and seismotectonics of the region around Beijing, China: Tectonophysics, 385, 159 ? 180.
[5] Huang, J. L., and Zhao, D. P., 2006, High-resolution mantle tomography of China and surrounding regions: J. Geophys. Res., 111(B09305).
[6] Hung, S. H., Dahlen, F. A., and Nolet, G., 2000, Fréchet kernels for finite-frequency traveltimes -Ⅱ. Examples: Geophys. J. Int., 141, 175 ? 203.
[7] Hung, S. H., Dahlen, F. A., and Nolet, G., 2001, Wavefront healing: a banana-doughnut perspective: Geophys. J. Int., 146, 289 ? 312.
[8] Hung, S. H., Shen, Y., and Chiao, L. Y., 2004, Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach: J. Geophys. Res., 109(B08305).
[9] 江燕, 广义走时有限频层析成像:博士论文,北京大学, 2009.
[10] Kennett, B. L., Engdahl, E. R., and Buland, R., 1995, Constraints on seismic velocities in the Earth from traveltimes: Geophys. J. Int., 122, 108 ? 124.
[11] Liu, Q., and Tromp, J., 2006, Finite-Frequency Kernels Based on Adjoint Methods: Bull. Seism. Soc. Am., 96(6), 2383 ? 2397.
[12] Moser, T. J., 1991, Shortest path calculation of seismic rays: Geophysics, 56(1), 59 ? 67.
[13] Nolet, G., and Dahlen, F. A., 2000, Wave front healing and the evolution of seismic delay times: J. Geophys. Res., 105(B8), 19043 ? 19054.
[14] Tromp, J., Tape, C., and Liu, Q., 2005, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels: Geophys. J. Int., 160, 195 ? 216.
[15] Wessel, P., and Smith, W. H. F., 1995, New version of the generic mapping tools released: EOS Trans: AGU, 76(33), 329.
[16] Zhao, D. P., Hasegawa, A., and Kanamori, H., 1994, Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events: J. Geophys. Res., 99(B11), 22313 ? 22329.
[17] Zhao, L., Jordan, T. H., and Chapman, C. H., 2000, Three-dimensional Frechet differential kernels for seismic delay times: Geophys. J. Int., 141, 558 ? 576.
[18] Zhao, L., Jordan, T. H., Olsen, K. B., and Chen, P., 2005, Frechet Kernels for Imaging Regional Earth Structure Based on Three-Dimensional Reference Models: Bull. Seism. Soc. Am., 95(6), 2066 ? 2080.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司