APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 158-166    DOI: 10.1007/s11770-014-0441-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Poynting矢量的归一化波场分离互相关逆时偏移成像条件
陈婷,何兵寿
中国海洋大学海底科学与探测技术教育部重点实验室,青岛 266100
A normalized wavefield separation cross-correlation imaging condition for reverse time migration based on Poynting vector
Chen Ting1 and He Bing-Shou1
1. Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao 266100, China.
 全文: PDF (760 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 叠前逆时偏移是目前精度较高的成像方法,然而严重的低频噪声降低了逆时偏移的构造成像精度,偏移噪声的压制是逆时偏移必需要考虑的问题。分析了低频噪声的产生机理,并根据声波方程的Poynting矢量分离出上、下、左、右行波,该方法计算量和存储量都远远小于常用的二维傅里叶变换分离方法,进而提出归一化的波场分离互相关成像条件,以压制逆时偏移低频噪声,提高成像精度。实现了Marmousi模型的试算,表明在波场延拓过程中利用Poynting矢量能够较好的分离上、下、左、右行波,与常规方法、拉普拉斯滤波、二维傅里叶变换波场分离的成像结果对比表明,成像时使用归一化的波场分离互相关成像条件能更好的压制偏移噪声,得到精度更高的逆时偏移成像结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈婷
何兵寿
关键词声波方程   Poynting矢量   波场分离   归一化互相关   偏移噪声     
Abstract: Prestack reverse time migration (PSTM) is a common imaging method; however low-frequency noises reduce the structural imaging precision. Thus, the suppression of migration noises must be considered. The generation mechanism of low-frequency noises is analyzed and the up-, down-, left-, and right-going waves are separated using the Poynting vector of the acoustic wave equation. The computational complexity and memory capacitance of the proposed method are far smaller than that required when using the conventional separation algorithm of 2D Fourier transform. The normalized wavefield separation cross-correlation imaging condition is used to suppress low-frequency noises in reverse time migration and improve the imaging precision. Numerical experiments using the Marmousi model are performed and the results show that the up-, down-, left-, and right-going waves are well separated in the continuation of the wavefield using the Poynting vector. We compared the imaging results with the conventional method, Laplacian filtering, and wavefield separation with the 2D Fourier transform. The comparison shows that the migration noises are well suppressed using the normalized wavefield separation cross-correlation imaging condition and higher precision imaging results are obtained.
Key wordsacoustic wave equation   Poynting vector   wavefield separation   normalized cross-correlation   migration noises   
收稿日期: 2013-06-28;
基金资助:

本研究由国家自然科学基金项目(编号:41174087,41204089)和国家油气重大专项项目(编号:2011ZX05005-005) 联合资助。

引用本文:   
陈婷,何兵寿. 基于Poynting矢量的归一化波场分离互相关逆时偏移成像条件[J]. 应用地球物理, 2014, 11(2): 158-166.
CHEN Ting,HE Bing-Shou. A normalized wavefield separation cross-correlation imaging condition for reverse time migration based on Poynting vector[J]. APPLIED GEOPHYSICS, 2014, 11(2): 158-166.
 
[1] Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse time migration: Geophysics, 48(11), 1514-1524.
[2] Berenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114(2), 185-200.
[3] Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36(3), 467-481.
[4] Claerbout, J. F., and Doherty, S. M., 1972, Downward continuation of moveout-corrected seismograms: Geophysics, 37(5), 741-768.
[5] Clapp, R. G., 2008, Reverse time migration: Saving the boundaries: 136, 136-144.
[6] Clapp, R. G., 2009, Reverse time migration with random boundaries: 79th Annual International Meeting., SEG Expanded Abstracts, 2809-2813.
[7] Dong, L. G., Ma, Z. T., Cao, J. Z., et al., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics(in Chinese), 43(3), 411-419.
[8] Deng, S. Q., 2012, Study on numerical simulation of whole-space elastic wave and reverse time migration imaging method: PhD Thesis, China University of Mining and Technology, Xuzhou.
[9] Jin, S., Jiang, F., Ren, Y., 2010, Comparison of Isotropic VTI And TTI Reverse Time Migration: an Experiment On BP Anisotropic Benchmark Dataset: 80th Annual International Meeting., SEG Expanded Abstracts, 3198-3202.
[10] Li, B., Liu, H. W., Liu, G. F., et al., 2010, Computational strategy of seismic pre-stack reverse time migration on CPU/GPU: Chinese Journal of Geophysics (in Chinese), 53(12), 2938-2943.
[11] Liu, F. Q., Zhang, G. Q., and Morton, S. A., 2011, An effective imaging condition for reverse-time migration using wavefield decomposition: Geophysics, 76(1), S29-S39.
[12] Liu, Y., and Sen M.K., 2012, A hybrid absorbing boundary condition for elastic staggered-grid modeling: Geophysical Prospecting, 60(6), 1114 - 1132.
[13] Loewenthal, D., Stoffa, P. L., and- Faria, E. L., 1987, Suppressing the unwanted reflections of the full wave equation: Geophysics, 52(7), 1007-1012.
[14] Loewenthal, D., and Mufti, I., 1983. Reversed time migration in spatial frequency domain: Geophysics, 48(5), 627-635.
[15] McMechan, G, A., 1983, Migration by extrapolation of time-dependent boundary values: Geophysical Prospecting, 31(2), 413-420.
[16] Mu, Y. G., and Pei, Z. L., 2005, Seismic numerical modeling for 3-D complex media: Petroleum Industry Press, China, 33-34.
[17] Poynting, J. H., 1884, On the transfer of energy in the electromagnetic field: Philosophical Transactions of the Royal Society of London, 175, 343-361.
[18] Schleicher, J., Costa, J., and Novais, A., 2008, A comparison of imaging conditions for wave-equation shot-profile migration: Geophysics, 73(6), S219-S227.
[19] Sun, R., McMechan, G. A., Lee, C. S., et al., 2006, Prestack scalar reverse-time depth migration of 3D elastic seismic data: Geophysics, 71(5), S199-S207.
[20] Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics, 72(5), SM213-SM221.
[21] Tang, C., Wang, D. L., 2012, Reverse time migration with source wavefield reconstruction and wavefield decomposition: Global Geology(in Chinese), 31(4), 803-812.
[22] Whitmore, N. D., 1983, Iterative depth migration by backward time propagation: 53th Annual International Meeting., SEG Expanded Abstracts, 382-385.
[23] Yan, H.Y., and Liu, Y., 2013, Acoustic prestack reverse time migration using the adaptive high-order finite-difference method in time-space domain: Chinese Journal of Geophysics (in Chinese), 56(3), 971 - 984.
[24] Yoon, K., Marfurt, K. J., 2006, Reverse-time migration using the Poynting vector: Exploration Geophysics, 37(1), 102-107.
[25] Zhang, J.H, and Yao, Z.X., 2013, Optimized finite-difference operator for broadband seismic wave modeling: Geophysics, 78(1), A13 - A18.
[26] Zhang, Y., Sun, J., 2008, Practical issues of reverse time migration: true amplitude gathers, noise removal and harmonic-source encoding: 70th EAGE Conference & Exhibition, Rome, Italy.
[27] Zhang, Y., Zhang, H., Zhang, G., 2011, A stable TTI reverse time migration and its implementation: Geophysics, 76(3), WA3-WA11.
[1] 宫昊,陈浩,何晓,苏畅,王秀明,王柏村,严晓辉. 基于单偶极混合测量模式的反射波测井方法研究[J]. 应用地球物理, 2018, 15(3-4): 393-400.
[2] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[3] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[4] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[5] 蔡晓慧, 刘洋, 任志明, 王建民, 陈志德, 陈可洋, 王成. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
[6] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司