APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 149-157    DOI: 10.1007/s11770-014-0436-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
空间归一化边界识别方法用于判断地质体的水平位置及深度
李丽丽,韩立国,黄大年
吉林大学地球探测科学与技术学院,长春 130061
Normalized edge detection, and the horizontal extent and depth of geophysical anomalies
Li Li-Li1, Han Li-Guo1, and Huang Da-Nian1
1. College of Geoexploration Science and Technology, Jilin University, Changchun, 130061, China.
 全文: PDF (922 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 边界识别是重磁数据解释中的常用方法之一,依据其结果可划分出地质体的水平范围。边界识别结果受地质体埋深及导数计算误差的影响所识别边界与真实边界之间存在一定的差距,且边界识别法无法直观地给出地质体的深度信息。为了获得异常体的水平位置和深度信息,本文提出空间归一化边界识别方法,其对不同深度的边界识别函数进行归一化计算,空间归一化边界识别法的最大值对应于异常体的水平位置和深度。常规边界识别结果的误差随埋深的减小而减小,而空间归一化边界识别法是通过最大值来判断地质体的位置,最大值是在地质体处获得,因此归一化边界识别方法所获得的结果是准确的。通过理论模型试验证明归一化边界识别方法能有效地完成异常体的水平位置和深度的计算,所获得的水平位置和深度信息与理论值相一致,为下一步的勘探计划提供了更加可靠的依据。将其应用于实际航磁数据的解释,获得了断裂的具体分布形式。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李丽丽
韩立国
黄大年
关键词边界识别   归一化   水平位置   深度     
Abstract: Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.
Key wordsgeophysical anomalies   normalized edge detection   normalized total horizontal derivative   regularization tilt angle   theta map   
收稿日期: 2013-07-06;
基金资助:

本研究由中国博士后科学基金资助项目(编号:2014M551188)和深部探测技术与实验研究专项SinoProbe-09-01(编号:201011078)联合资助。

引用本文:   
李丽丽,韩立国,黄大年. 空间归一化边界识别方法用于判断地质体的水平位置及深度[J]. 应用地球物理, 2014, 11(2): 149-157.
LI Li-Li,HAN Li-Guo,HUANG Da-Nian. Normalized edge detection, and the horizontal extent and depth of geophysical anomalies[J]. APPLIED GEOPHYSICS, 2014, 11(2): 149-157.
 
[1] Abdelrahman, E. M., 1990, Discussion on “A least-squares approach to depth determination from gravity data” by O.P. Gupta: Geophysics, 55, 376-378.
[2] Aydin, A., 1997, Evaluation of Gravity Data in Terms of Hydrocarbon by Normalized Full Gradient, Variation, and Statistic Methods, Model Studies and Application in Hasankale-Horasan Basin (Erzurum): Ph.D. Thesis, Karadeniz Technical Univ., Natural and Applied Sciences Institute, Trabzon, Turkey.
[3] Aydin, A., 2005. Evaluation of Gravity Anomalies by Direct Interpretation Techniques: An Application from Hasankale-Horasan Region: Journal of Engineering Sciences, 11(1), 95-102.
[4] Aydin, A., 2007, Interpretation of gravity anomalies with the normalized full gradient (NFG) method and an example: Pure and Applied Geophysics, 164 (11), 2329-2344.
[5] Berezkin, V.M., 1967, Application of the total vertical gradient of gravity for determination of the depths to the sources of gravity anomalies: Exploration Geophysics, 18, 69-79.
[6] Blakely, R. J., 1995. Potential theory in gravity and magnetic applications: Cambridge University Press.
[7] Cordell, L., 1979, Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico. New Mexico Geol. Soc. Guidebook, 30th Field Conf., 59-64.
[8] Cordell. L, and Grauch, V. J. S., 1985, Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico, in Hinzc. W. J. Ed., The utility of regional gravity and magnetic anomaly: Society of Exploration Geophysicists, 181-197.
[9] Cooper, G. R. J., and Cowan, D. R.. 2006, Enhancing potential field data using filters based on the local phase: Computers & Geosciences, 32(10), 1585-1591.
[10] Cooper, G. R. J., and Cowan, D. R., 2008, Edge enhancement of potential field data using normalized statistics: Geophysics, 73(3), H1-H4.
[11] Cooper, G. R. J., 2009, Balancing images of potential field data: Geophysics, 74(3), L17-L20.
[12] Elawadi, E., Salem, A., and Ushijima, K., 2001, Detection of cavities and tunnels from gravity data using a neural network: Exploration Geophysics, 32(4), 204-208.
[13] Even, H. M., 1936, The place of the vertical gradient in gravitational interpretations: Geophysics, 1(1), 127-136.
[14] Gao,F.H., Wang,F., and Cao,H.H., 2010, Zircon U-Pb Age of the Basement Granite from Suibin Depression in Sanjiang Basin and Its Tectonic Implications: Journal of Jilin University (Earth Science Edition), 40(4), 869-878.
[15] Griffin, W.R., 1949, Residual gravity in theory and practice: Geophysics. 14(1), 39-56.
[16] Ma,G.Q., Liu, C., Huang, D.N., et al., 2013, A stable iterative downward continuation of potential ?eld data: Journal of Applied Geophysics, 98, 205-211.
[17] Hartman, R. R., Teskey, D. J., and Friedberg, J. L., 1971, A system for rapid digital aeromagnetic interpretation: Geophysics, 36(5), 891-918.
[18] Hood. P. J., and Tasked, D. J., 1989, Aeromagnetic gradiometer program of the Geological Survey of Canada: Geophysics, 54(8), 1012-1022.
[19] Hsu, S., Sibuet, J. C., and Shyu, C., 1996, High-resolution detection of geologic boundaries from potential field anomalies: an enhanced analytic signal technique: Geophysics, 61(2), 373-386.
[20] Miller, H.G., and Singh, V., 1994, Potential field tilt—a new concept for location of potential field sources: Journal of Applied Geophysics, 32(2-3), 213-217.
[21] Ma,G.Q.,Huang,D.N.,Yu,P.,et al., Huang Da-Nian, Yu, Ping et al., 2012, Application of improved balancing filters to edge identification of potential field data: Chinese J.Geophys., 55(12),4288-4295.
[22] Ma,G.Q., 2013, Edge detection of potential field data using improved local phase filter: Exploration Geophysics, 44(1), 36-41.
[23] Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation: Geophysics, 37(3), 507-517.
[24] Rajagopalan, S., and Milliganm P., 1995, Image enhancement of aeromagnetic data using automatic gain control: Exploration Geophysics, 25(4), 173-178.
[25] Reid, A. B,, Allsop, J. M., Granser, H,, et al. 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55(1), 80-91.
[26] Roest, W. R., Verhoef, J., and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57(1), 116-125.
[27] Salem, A., Ravat, D., Mushayandebvu, M. F., et al. 2004, Linearized least-squares method for interpretation of potential field data from sources of simple geometry: Geophysics, 69(3), 783-788.
[28] Thompson, D. T., 1982, “EULDPH”—A new technique for making computer-assisted depth estimates from magnetic data: Geophysics, 47(1), 31-37.
[29] Thurston, J. B., and Smith, R. S., 1997, Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI method: Geophysics, 62(3), 807-813.
[30] Verduzco, B., Fairhead, J. D., and Green, C. M., 2004, New insights into magnetic derivatives for structural mapping: The Leading Edge, 23(2), 116-119.
[31] Wang,W.Y.,Pan,Y., and Qiu,Z.Y., 2009, A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential ?eld data: Applied Geophysics, 6(3), 226-233
[32] Wang,W.Y., 2010, Spatial variation law of the extreme value positions of total horizontal derivative for potential field data. Chinese Journal of Geophysics, 53(9), 2257-2270.
[33] Wang,W.Y., Zhang,G.C., and Liang,J.S., 2010, Spatial variation law of vertical derivative zero points for potential field data: Applied Geophysics, 7(3), 197-209.
[34] Wijns C, Perez C, Kowalczyk P., 2005, Theta map: edge detection in magnetic data: Geophysics, 70 (4), 39-43.
[35] Xiao, P.F., Li, M., and Xu, S.Z., 2006, Stable solution of normalized total gravity gradient: Oil Geophysics Prospecting, 41(5) , 596-600.
[36] Zeng, H., Meng, X., and Yao, C., 2002. Detection of reservoirs from normalized full gradient of gravity anomalies and its application to Shengli Oil Field, East China: Geophysics, 67(4), 1138-1147.
[1] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[2] 武绍江,王一博,马玥,常旭. 基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移[J]. 应用地球物理, 2018, 15(1): 69-77.
[3] 刘金钊, 柳林涛, 梁星辉, 叶周润. 利用Extrapolation Tikhonov正则化算法进行重力梯度三维密度反演[J]. 应用地球物理, 2015, 12(2): 137-146.
[4] 吴娟, 陈小宏, 白敏, 刘国昌. 基于吸收衰减补偿的多分量高斯束叠前深度偏移[J]. 应用地球物理, 2015, 12(2): 157-168.
[5] 刘少勇, 王华忠, 刘太臣, 胡英, 张才. 基于旅行时梯度场的Kirchhoff PSDM角道集生成方法研究[J]. 应用地球物理, 2015, 12(1): 64-72.
[6] 郭灿灿, 熊盛青, 薛典军, 王林飞. 基于垂向一阶导数与解析信号比值的欧拉反演方法[J]. 应用地球物理, 2014, 11(3): 331-339.
[7] 陈婷, 何兵寿. 基于Poynting矢量的归一化波场分离互相关逆时偏移成像条件[J]. 应用地球物理, 2014, 11(2): 158-166.
[8] Mohammad Ehsan Hekmatian, Vahid E. Ardestani, Mohammad Ali Riahi, Ayyub Memar Koucheh Bagh, and Jalal Amini. 利用支持向量分类(SVC)估算断层深度和特征选择[J]. 应用地球物理, 2013, 10(1): 88-96.
[9] 周辉, 林鹤, 盛善波, 陈汉明, 王颖. 补偿吸收衰减的高角度叠前深度偏移方法[J]. 应用地球物理, 2012, 9(3): 293-300.
[10] 刘国峰, 孟小红, 刘洪. 用GPU提速地震资料单程波有限差分叠前深度偏移[J]. 应用地球物理, 2012, 9(1): 41-48.
[11] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 7(1): 49-56.
[12] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 6(1): 10-17.
[13] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 7(1): 10-17.
[14] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 6(1): 49-56.
[15] 王万银, 潘玉, 邱之云. 位场数据归一化总水平导数垂向导数边缘识别方法[J]. 应用地球物理, 2009, 6(3): 226-233.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司