APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 207-214    DOI: 10.1007/s11770-014-0432-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于核磁共振测量的南海神狐海域天然气水合物对地层渗透率的影响研究
李传辉1,赵倩2,徐红军3,冯凯4,刘学伟1
1. 中国地质大学(北京)地球物理与信息技术学院,北京 100083
2. Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201-0413, USA
3. 中国石油测井重点实验室,中国石油,北京 100083
4. 中国石油海外勘探开发公司,北京 100034
Relation between relative permeability and hydrate saturation in Shenhu area, South China Sea
Li Chuan-Hui1, Zhao Qian2, Xu Hong-Jun3, Feng Kai4, and Liu Xue-Wei1
1. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China.
2. Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201-0413, USA.
3. Key Lab of Well Logging, PetroChina, Beijing 100083, China.
4. China National Oil and Gas Exploration and Development Corporation, Beijing 100034, China.
 全文: PDF (868 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文利用取自南海神狐海域钻井岩芯进行了核磁共振测量,研究了岩石中所含水合物对地层渗透率的影响,该岩芯样品为一“孔隙充填型”水合物样品。核磁共振测量结果表明岩石中所含水合物对地层渗透率影响很大,且存在多方面的影响因素。随着含水合物饱和度的增加,地层渗透率迅速降低。本文利用Masuda下降模型建立了适用于南海神狐海域的相对渗透率与含水合物饱和度的经验公式,下降指数N=7.9718。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李传辉
赵倩
徐红军
冯凯
刘学伟
关键词天然气水合物   渗透率   核磁共振实验   南海神狐海域     
Abstract: Nuclear magnetic resonance measurements in hydrate-bearing sandstone samples from the Shenhu area, South China Sea were used to study the effect of gas hydrates on the sandstone permeability. The hydrate-bearing samples contain pore-filling hydrates. The data show that the pore-filling hydrates greatly affect the formation permeability while depending on many factors that also bear on permeability; furthermore, with increasing hydrate saturation, the formation permeability decreases. We used the Masuda model and an exponent N = 7.9718 to formulate the empirical equation that describes the relation between relative permeability and hydrate saturation for the Shenhu area samples.
Key wordsGas hydrate   permeability   NMR   Shenhu area   
收稿日期: 2013-11-25;
基金资助:

本研究由国际科技合作计划(编号:2010DFA21630)和国家自然科学基金(编号:41306050)联合资助。

引用本文:   
李传辉,赵倩,徐红军等. 基于核磁共振测量的南海神狐海域天然气水合物对地层渗透率的影响研究[J]. 应用地球物理, 2014, 11(2): 207-214.
LI Chuan-Hui,ZHAO Qian,XU Hong-Jun et al. Relation between relative permeability and hydrate saturation in Shenhu area, South China Sea[J]. APPLIED GEOPHYSICS, 2014, 11(2): 207-214.
 
[1] An, X. P., Li, X. F., Cheng, S. Q., Wang, Z. W., and Liu, S. M., 2005, Comparative analysis for permeability acquired from different methods: Well Testing (in Chinese), 14(5), 14-17.
[2] Chen, F., Zhou, Y., Su, X., Liu, G. H., Lu, H. F., and Wang, J. J., 2011, Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu Area of northern South China Sea: Marine Geology & Quaternary Geology (in Chinese), 31(5), 95-100.
[3] Coates, G. R., Peveraro, R. C. A., Hardwick, A., and Roberts, D., 1991, The magnetic resonance imaging log characterized by comparison with petrophysical properties and laboratory core data: The SPE 71th Annual Technical Conference and Exhibition, Dallas, SPE 22723.
[4] Kenyon, W. E., 1992, Nuclear magnetic resonance as a petrophysical measurement: Nucl. Geophys., 6(2), 152-171.
[5] Kleinberg, R. L., Flaum, C., Griffin, D. D., Brewer, P. G., Malby, G. E., Peltzer, E. T., and Yesinowski, J. P., 2003, Deep Sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation and submarine slope stability: Journal of Geophysical Research, 108(B10), 2508-2524.
[6] Kumar, A., Maini, B., Bishnoi, P. R., Clarke, M., Zatsepina, O., and Srinivasan, S., 2010, Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media: Journal of Petroleum Science and Engineering, 70, 114-122. 17(4), 37-40.
[7] Li, C. H., Feng, K., and Liu, X. W. 2013, Study on p-Wave Attenuation in Hydrate-Bearing Formation Based on BISQ model: Journal of Geological Research, doi:10.1155/2013/176579.
[8] Liang, H., Song, Y., Chen, Y., and Liu, Y., 2011, The measurement of permeability of porous media with methane hydrate: Petroleum Science and Technology, 29(1), 79-87.
[9] Liu, Y., Chen, W., Song, Y. C., Yang, M. J., Li, Q. P., and Yu, X. C., 2011, Experimental and theoretical study of permeability character of sediments containing methane hydrates: Journal of Dalian University of Technology (in Chinese), 51(6), 793-797.
[10] Masuda, Y., Naganawa, S., and Ando, S., 1997, Numerical calculation of gas production performance from reservoirs containing natural gas hydrates: The SPE 73rd Annual Technical Conference and Exhibition, San Antonio, SPE 38291.
[11] Minagawa, H., Egawa, K., Sakamoto, Y., Komai, T., Tenma, N., and Narita, H., 2012, Characterization of hydraulic permeability and pore-size distribution of methane hydrate-bearing sediment using proton nuclear magnetic resonance measurement: International Journal of Offshore and Polar Engineering, 22(4), 306-313.
[12] Minagawa, H., Nishikawa, Y., Ikeda, I., Miyazaki, K., Takahara, N., Sakamoto, Y., Komai, T., and Narita, H., 2008, Relation between permeability and pore-size distribution of methane-hydrate-bearing sediments: Offshore Technology Conference, Houston, Texas, USA.
[13] Moridis, G., Apps, J., Pruess, K., and Myer, L., 1998, EOSHYDR: a tough2 module for CH4-hydrate release and flow in the subsurface: LBNL Report No. 42386.
[14] Parker, J. C., Lenhard, R. J., and Kuppusamy, T., 1987, A parametric model for constitutive properties governing multiphase flow in porous media: Water Resource Research, 23(4), 618-624.
[15] Sakamoto, Y., Kakumoto, M., Miyazaki, K., Tenma, N., Komai, T., Yamaguchi, T., Shimokawara, M., and Ohga, K., 2009, Numerical study on dissociation of methane hydrate and gas production behavior in laboratory-scale experiments for depressurization: Part 3—Numerical study for estimation of permeability in methane hydrate reservoir: International Journal of Offshore and Polar Engineering, 19(2), 124-134.
[16] Sakamoto, Y., Komai, T., Kawamura, T., Minagawa, H., Tenma, N., and Yamaguchi, T., 2007, Laboratory-scale experiment of methane hydrate dissociation by hot-water injection and numerical analysis for permeability estimation in reservoir: Part 1—Numerical study for estimation of permeability in methane hydrate reservoir: International Journal of Offshore and Polar Engineering, 17(1), 47-56.
[17] Sakamoto, Y., Komai, T., Kawamura, T., Minagawa, H., Tenma, N., and Yamaguchi, T., 2007, Modification of permeability model and history matching of laboratory-scale experiment for dissociation process of methane hydrate: Part 2—Numerical study for estimation of permeability in methane hydrate reservoir: International Journal of Offshore and Polar Engineering, 17(1), 57-66.
[18] Song, Y. C., Huang, X., Liu, Y., and Yang, M. J., 2010, Experimental study of permeability of porous medium containing methane hydrate: Journal of Thermal Science and Technology (in Chinese), 9(1), 51-57.
[19] Spangenberg, E., 2001, Modeling of the influence of gas hydrate content on the electrical properties of porous sediments: Journal of Geophysical Research: Solid Earth, 106(B4), 6535-6548.
[20] Wang, G. H., and Li, G. M., 2001, Analysis of the method and principles of determining permeability with NMR logging: Well-Logging Technology (in Chinese), 25(2), 101-104.
[21] Zhao, Q., Dunn K.J., and Liu, X. W., 2011, A simulation study of formation permeability as a function of methane hydrate concentration: Applied Geophysics, 8(2), 101-109.
[1] 彭蓉,魏建新,狄帮让,丁拼搏,刘子淳. 砂岩样品的震电效应实验研究[J]. 应用地球物理, 2016, 13(3): 425-436.
[2] 沙志彬, 张明, 张光学, 梁金强, 苏丕波. 利用四分量OBS数据揭示南海北部陆坡天然气水合物分布及速度特征[J]. 应用地球物理, 2015, 12(4): 555-563.
[3] 周峰, 胡祥云, 孟庆鑫, 胡旭东, 刘志远. 利用泥浆侵入效应评估储层渗透率的模型和方法[J]. 应用地球物理, 2015, 12(4): 482-492.
[4] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[5] 杨佳佳, 何兵寿, 张建中. 海底天然气水合物OBS多分量地震正演模拟[J]. 应用地球物理, 2014, 11(4): 418-428.
[6] 何涛, 李洪林, 邹长春. BSR热流的三维地貌校正和流体汇聚探测[J]. 应用地球物理, 2014, 11(2): 197-206.
[7] 赵倩, 邓克俊, 刘学伟. 地层渗透率与水合物含量关系的模拟研究[J]. 应用地球物理, 2011, 8(2): 101-109.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司