APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 167-178    DOI: 10.1007/s11770-014-0430-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于萤火虫算法的瑞利波非线性反演
周腾飞1, 2,彭更新3,胡天跃1, 2,段文胜3,姚逢昌1, 2,刘依谋3
1. 北京大学石油与天然气研究中心,北京 100871
2. 中国石油勘探开发研究院,北京 100083
3. 中国石油塔里木油田公司勘探开发研究院,新疆库尔勒 841000
Rayleigh wave nonlinear inversion based on the Firefly algorithm
Zhou Teng-Fei1,2, Peng Geng-Xin3, Hu Tian-Yue1,2, Duan Wen-Sheng3, Yao Feng-Chang1,2, and Liu Yi-Mou3
1. Research Institute of Oil and Gas, Peking University, Beijing 100871, China.
2. Research Institute of Exploration and Development, PetroChina, Beijing 100083, China.
3. Research Institute of Exploration and Development, Tarim Oilfield, PetroChina, Korla, 841000, China.
 全文: PDF (855 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 瑞利波具有强振幅、低频和低速的特点,在反射地震勘探中通常是需要被压制的强噪声。本文研究如何利用瑞利波获取近地表地层的横波速度和地下结构,选取萤火虫优化算法进行瑞利波的反演,萤火虫优化算法是一种新的粒子群算法理论,具有稳定、快捷、全局搜索等特点。针对萤火虫优化算法优缺点进行了讨论和改进,通过对理论模型和野外数据的测试应用,将提取的瑞利波频散曲线反演得到横波速度信息。结果表明萤火虫优化算法能实现瑞利波非线性反演,并具有分辨率高、抗干扰能力强等优点和实际使用前景。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周腾飞
彭更新
胡天跃
段文胜
姚逢昌
刘依谋
关键词瑞利波   近地表   横波速度   萤火虫算法   非线性反演     
Abstract: Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.
Key words:   
收稿日期: 2014-04-29;
基金资助:

本研究由国家973计划(编号:2013CB228602)、国家科技重大专项(编号:2011ZX05004-003)和国家863计划(编号:2013AA064202)资助。

引用本文:   
周腾飞,彭更新,胡天跃等. 基于萤火虫算法的瑞利波非线性反演[J]. 应用地球物理, 2014, 11(2): 167-178.
ZHOU Teng-Fei,PENG Geng-Xin,HU Tian-Yue et al. Rayleigh wave nonlinear inversion based on the Firefly algorithm[J]. APPLIED GEOPHYSICS, 2014, 11(2): 167-178.
 
[1] Basu, B., and Mahanti, G. K., 2011, Fire fly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna: Progress In Electromagnetics Research B, 32.
[2] Fan, Y. H., Liu, J. Q., and Xiao, B. X., 2002, Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves: Journal of Hunan University (Natural Sciences Edition), (in Chinese), 29(5), 25-30.
[3] Lin, C. P., Chang, C. C., and Chang, T. S., 2004, The use of MASW method in the assessment of soil liquefaction potential: Soil Dynamics and Earthquake Engineering, 24(9), 689-698.
[4] Luo, Y. H., Xia, J. H., Liu, J. P., Liu, Q. S., and Xu, S. F., 2007, Joint inversion of high-frequency surface waves with fundamental and higher modes: Journal of Applied Geophysics, 62(4), 375-384.
[5] Luo, Y. H., Xia, J. H., Miller, R. D., Xu, Y. X., Liu, J. P., and Liu, Q. S., 2008, Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform: Pure and Applied Geophysics, 165(5), 903-922.
[6] Mari, J. L., 1984, Estimation of static corrections for shear-wave profiling using the dispersion properties of Love waves: Geophysics, 49(8), 1169-1179.
[7] Miller, R. D., Xia, J. H., Park, C. B., and Ivanov, J. M., 1999, Multichannel analysis of surface waves to map bedrock: The Leading Edge, 18(12), 1392-1396.
[8] Socco, L. V., Foti, S., and Boiero, D., 2010, Surface-wave analysis for building near-surface velocity models—Established approaches and new perspectives: Geophysics, 75(5), 75A83-75A102.
[9] Xia, J. H., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., and Ivanov, J. M., 2002, Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements: Soil dynamics and earthquake engineering, 22(3), 181-190.
[10] Xia, J. H., Miller, R. D., and Park, C. B., 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64(3), 691-700.
[11] Yang, X. S., Sadat Hosseini, S. S., and Gandomi, A. H., 2012, Firefly algorithm for solving nonconvex economic dispatch problems with valve loading effect: Applied Soft Computing, 12(3), 1180-1186.
[12] Yang, X. S., 2010, Firefly algorithm, stochastic test functions and design optimization: International Journal of Bio-Inspired Computation, 2(2), 78-84.
[13] Yuan, S. Y., Wang, S. X., and Tian, N., 2009, Swarm intelligence optimization and its application in geophysical data inversion: Applied Geophysics, 6(2), 166-174.
[14] Yuan, S. Y., and Wang, S. X., 2013, Spectral sparse Bayesian learning reflectivity inversion: Geophysical Prospecting, 61(4), 735-746.
[1] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[2] 李琳,马劲风,王浩璠,谭明友,崔世凌,张云银,曲志鹏. 胜利油田高89区块CO2驱油与地质封存过程中横波速度预测方法研究[J]. 应用地球物理, 2017, 14(3): 372-380.
[3] 阎守国,谢馥励,李长征,张碧星. 含有孔隙层的地表分层模型中瑞利波频散特性研究[J]. 应用地球物理, 2016, 13(2): 332-342.
[4] 江沸菠,戴前伟,董莉. 基于剪枝贝叶斯神经网络的电阻率成像非线性反演[J]. 应用地球物理, 2016, 13(2): 267-278.
[5] 李国发, 郑浩, 祝文亮, 王明超, 翟桐立. 井地联合近地表Q因子层析反演[J]. 应用地球物理, 2016, 13(1): 93-102.
[6] 刘灵, 耿建华, 郭彤楼. 横波速度预测的边界加权平均法[J]. 应用地球物理, 2012, 9(4): 421-428.
[7] 杨锴, 周星, 李辉, 刘玉柱. 基于Monte Carlo方法的近地表速度模型建模研究[J]. 应用地球物理, 2012, 9(4): 475-482.
[8] 魏超, 李小凡, 郑晓东. 基于群体搜索的串行蒙特卡罗反演方法的并行算法[J]. 应用地球物理, 2010, 7(2): 127-134.
[9] 赵太银, 胡光岷, 贺振华, 黄德济. 二阶精度广义非线性全局最优的偏移速度反演方法[J]. 应用地球物理, 2009, 6(2): 138-149.
[10] 石战结, 田钢, 王帮兵, 陈树民. 叠前三维地震近地表吸收补偿技术在大庆油田的应用研究[J]. 应用地球物理, 2009, 6(2): 184-191.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司