APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 139-148    DOI: 10.1007/s11770-014-0440-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响
王祝文,许石,刘银萍,刘菁华
地球探测科学与技术学院,吉林大学,长春 130026
Extrapolated Tikhonov method and inversion of 3D density images of gravity data
Wang Zhu-Wen1, Xu Shi1, Liu Yin-Ping1, and Liu Jing-Hua1
1. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China.
 全文: PDF (1439 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 Tikhonov 正则化(TR)方法在重磁数据处理中发挥了重要的作用,本文在研究如何利用Tikhonov正则化方法解决重力数据3D反演的同时,深入讨论了可进一步提高拟合误差的Extrapolation Tikhonov正则化方法(EXTR)的原理,并就其参数选择方法及各参数对拟合误差、迭代次数及反演结果的影响进行研究。密度相同的组合模型及密度不同的组合模型试算结果表明,与TR方法相比,EXTR方法不仅可以达到解释人员设定的先验拟合误差水平,在计算时间及迭代次数相应增加的前提下有更高的拟合精度;同时其反演结果也更加紧致,进一步改善了TR反演结果的发散性;并且其反演数据范围更贴近预设模型参数范围,模型特征与预设模型密度分布吻合较好。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王祝文
许石
刘银萍
刘菁华
关键词重力反演   三维反演   Extrapolation Tikhonov正则化方法   Extrapolation Tikhonov正则化参数选择     
Abstract: Tikhonov regularization (TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method (EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.
Key wordsGravity data inversion   3D inversion   extrapolated Tikhonov regularization method   extrapolated Tikhonov parameter selection   
收稿日期: 2013-01-17;
基金资助:

本研究由国家科技支撑计划项目(编号:2009BAB43B00和2009BAB43B01)资助。

引用本文:   
王祝文,许石,刘银萍等. 重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响[J]. 应用地球物理, 2014, 11(2): 139-148.
WANG Zhu-Wen,XU Shi,LIU Yin-Ping et al. Extrapolated Tikhonov method and inversion of 3D density images of gravity data[J]. APPLIED GEOPHYSICS, 2014, 11(2): 139-148.
 
[1] Barbosa, V. C. F., and Silva, J. B. C., 1994, Generalized compact gravity inversion: Geophysics, 59(1), 57-68.
[2] Blakely, R. J., 1995, Potential theory in gravity and magnetic applications: Cambridge University Press.
[3] Chai, Y., and Hinze, W. J., 1988, Gravity inversion of an interface above which the density contrast varies exponentially with depth: Geophysics, 53(6), 837-845.
[4] Chenot, D., and Debeglia, N., 1990, Three-dimensional gravity or magnetic constrained depth inversion with lateral and vertical variation of contrast: Geophysics, 55(3), 327-335.
[5] Commer, M., 2011, Three-dimensional gravity modeling and focusing inversion using rectangular meshes: Geophysical Prospecting, 59, 966-979.
[6] Cordell, L., and Henderson, R. G., 1968, Iterative three-dimensional solution of gravity anomaly data using a digital computer: Geophysics, 33(4), 596-601.
[7] Guillen, A,, and Menichetti, V., 1984, Gravity and magnetic inversion with minimization of a specific functional: Geophysics, 49(8), 1354-1360.
[8] Guo, L. H., Meng, X. H., and Shi, L., 2009, 3D correlation imaging for gravity and gravity gradiometry data: Chinese J. Geophys. (in Chinese), 52(4), 1092-1106.
[9] Hamarik, U., Palm, R., and Raus, T., 2008, Extrapolation of Tikhonov and Lavrentiev regularization methods: Journal of Physics: Conference Series, 135, 1-8.
[10] Hamarik, U., Palm, R., and Raus, T., 2007, Use of extrapolation in regularization methods: Journal of Inverse and Ill-Posed Problems, 15, 277-294.
[11] Joerg L., and Heinrich V., 2013, Large-scale Tikhonov regularization of total least squares: Journal of Computational and Applied Mathematics, 238, 95-108
[12] Last, B. J., and Kubik, K.,1983, Compact gravity inversion: Geophysics, 48(6), 713-721.
[13] Lawson, C. J., and Hanson, R. J., 1974, Solving least squares problems: Prentice-Hall Inc.
[14] Li, Y. G., and Oldenburg, D. W., 2003, Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method: Geophysical Journal International, 152, 251-265.
[15] Li, Y. G., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data: Geophysics, 61(2), 394-408.
[16] Li, Y. G., and Oldenburg, D. W., 1998, 3-D inversion of gravity data: Geophysics, 63(1), 109-119.
[17] Liu, Y. P., Wang, Z. W., Du, X. J., et al., 2013, 3D constrained inversion of gravity data based on Extrapolation Tikhonov regularization algorithm: Chinese J. Geophys. (in Chinese), 56(5), 1650-1659.
[18] Medeiros, W. O., and Silva, J. B. C., 1996, Geophysical inversion using approximate equality constraints: Geophysics, 61(6), 1678-1688.
[19] Meng, X. H., Liu, G. F., and Chen, Z. X., et al., 2012, 3-D gravity and magnetic inversion for physical properties based on residual anomaly correlation: Chinese J. Geophys. (in Chinses), 55(1), 304-309.
[20] Pedersen, L. B., 1977, Interpretation of potential field data, a generalized inverse approach: Geophys. Pros ., 25, 199-230.
[21] Silva, J. B. C., and Barbosa, V., 2006, Interactive gravity inversion: Geophysics, 71, J1-J9.
[22] Silvia, G., and Paolo, N., 2014, Automatic parameter setting for Arnoldi-Tikhonov methods: Journal of Computational and Applied Mathematics, 256, 180-195
[23] Tikhonov, A. N., 1963, Regularization of ill-posed problems: Doklady Akad. Nauk, SSSR, 153, 49-52.
[24] Tikhonov, A. N., and Arsenin, V. Y., 1977, Solution of ill-posed problems: V. H. Winston &Sons.
[25] Yao, C. L., Zheng, Y. M., and Zhang, Y. W., 2007, 3D gravity and magnetic inversion for physical properties using stochastic subspaces: Chinese J. Geophys. (in Chinese), 50(5), 1576-1583.
[26] Yao, C. L., Hao, T. Y., and Guan, Z. N., et al, 2003, High-speed computation and effective storage in 3-D gravity and magnetic inversion based on genetic algorithms: Chinese J. Geophys. (in Chinses), 46(2), 252-258.
[27] Zhdanov, M., 1988, Integral Transforms in Geophysics: Springer Verlag.
[28] Zheng H. L., 2005, Gravity field and gravity exploration: Geological Publishing House, BeiJing.
[1] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[2] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[3] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[4] 曹萌,谭捍东,王堃鹏. 人工源极低频电磁法三维LBFGS反演[J]. 应用地球物理, 2016, 13(4): 689-700.
[5] 刘云鹤,殷长春,任秀艳,邱长凯. 时间域航空电磁三维并行反演研究[J]. 应用地球物理, 2016, 13(4): 701-711.
[6] 刘金钊, 柳林涛, 梁星辉, 叶周润. 利用Extrapolation Tikhonov正则化算法进行重力梯度三维密度反演[J]. 应用地球物理, 2015, 12(2): 137-146.
[7] 林昌洪, 谭捍东, 舒晴, 佟拓, 张玉玫. 稀疏测线大地电磁资料三维反演研究:合成算例[J]. 应用地球物理, 2012, 9(1): 9-18.
[8] 林昌洪, 谭捍东, 佟拓. 大地电磁全信息资料三维共轭梯度反演研究[J]. 应用地球物理, 2011, 8(1): 1-10.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司