APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (3): 267-274    DOI: 10.1007/s11770-009-0023-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
SH波场中完全匹配层吸收边界研究
刘炯,马坚伟,杨慧珠
地震勘探研究所,航空航天,清华大学,北京100084
The study of perfectly matched layer absorbing boundaries for SH wave fields
Liu Jiong1, Ma Jian-Wei1, and Yang Hui-Zhu1
1. Institute of Seismic Exploration, School of Aerospace, Tsinghua University, Beijing 100084, China.
 全文: PDF (581 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 无限域中的波动方程数值模拟往往需要稳定有效的吸收边界来消除人为边界截断所引起的虚假反射。本文首先写出了全匹配层(PML)内SH波的波动方程推导结果,并给出了方程的Crank-Nicolson计算格式与其中空间导数2阶,6阶,10阶精度的有限差分算法以及伪谱法算法。然后设计了均匀各向同性介质模型和分层溶洞模型并引入图像处理中的信噪比(SNR)概念来定量研究边界吸收效果同PML宽度、不同精度算法的关系。数值结果表明当匹配层宽度
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘炯
马坚伟
杨慧珠
关键词吸收边界   完全匹配层(PML)   SH波场     
Abstract: When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly Matched Layers (PML) are deduced and their Crank-Nicolson scheme are presented in this paper. We use the second-, sixth-, and tenth-order finite difference and pseudo-spectral algorithms to compute the spatial derivatives. Two numerical models, a homogeneous isotropic medium and a multi-layer model with a cave, are designed to investigate how the absorbing boundary width and the algorithms determine PML effects. Numerical results show that, for PML, the low-order finite difference algorithms have fairly good absorbing effects when the absorbing boundary is thin, whereas, high-order algorithms always have good absorption when the boundary is thick. Finally, we discuss the reflection coefficient and point out its shortcomings, which is why we use the SNR to quantitatively scale the PML effects.
Key wordsabsorbing boundary   PML   SH wave fields   
收稿日期: 2008-07-03;
基金资助:

本研究由国家973项目基金(编号:007CB209505)、国家自然科学基金(编号:40704019和40674061)、清华大学校基础研究基金(编号:JC2007030)和中石油创新基金(编号:060511-1-1)联合资助。

引用本文:   
刘炯,马坚伟,杨慧珠. SH波场中完全匹配层吸收边界研究[J]. 应用地球物理, 2009, 6(3): 267-274.
LIU Jiong,MA Jian-Wei,YANG Hui-Zhu. The study of perfectly matched layer absorbing boundaries for SH wave fields[J]. APPLIED GEOPHYSICS, 2009, 6(3): 267-274.
 
[1] Berenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetics waves: Journal of Computational Physics., 114, 185 - 200.
[2] Blaschak, J. and Kriegsmann, G., 1988, A comparative study of absorbing boundary conditions: Journal of Computational Physics, 77, 109 - 139.
[3] Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equation: Geophysics, 50(4), 705 - 708.
[4] Chew, W. C., and Liu, Q. H., 1996, Using perfectly matched layers for elastodynamics: in Proceedings of the IEEE Antennas Propagation Society International Symposium, 1, 366 - 369.
[5] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294 - 30.
[6] Engquist, B., and Majda, A., 1977, Absorbing boundary conditions for the numerical simulation of waves: Mathematics of Computation, 31, 629 - 651.
[7] He, F. J., Tao, G., and Wang, X. L., 2006, Finite difference modeling of the acoustic field by sidewall logging devices: Chinese Journal of Geophysics, 49(3), 923 - 928.
[8] Mur, G., 1988, The modeling of Singularities in the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations: IEEE Trans. Microwave Theory and Techniques, 29(10), 1073 - 1077.
[9] Ozdenvar, T., and McMechan, G., 1996, Causes and reduction of numerical artifacts in pseudo-spectral wavefield extrapolation: Geophysical Journal International, 126, 819 - 828.
[10] Song, R. L., Ma, J., and Wang, K. X., 2005, The application of the nonsplitting perfectly matched layer in numerical modeling of wave propagation in poroelastic media: Applied Geophysics, 12(4), 216 - 222.
[11] Wang, S. D., 2003, Absorbing boundary condition for acoustic wave equation by perfectly matched layer: Oil Geophysical Prospecting, 38(1), 31 - 34.
[12] Wang, T., and Tang, X., 2003, Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach: Geophysics, 68, 1749 - 1755.
[13] Wang, C. Q, and Zhu, X. L., 1994, Finite-difference time-domain method of electromagnetic field: Peking University Press, 47 - 57.
[14] Zhao, H. B., Wang, X. M., Wang, D., and Chen, H., 2007, Applications of the boundary absorption using a perfectly matched layer for elastic wave simulation in poroelastic media: Chinese Journal of Geophysics, 50(2), 581 - 591.
[1] 王兵,张阔,陶果,刘鹤,张晓亮. 基于混合PML的频域有限元声反射测井正演模拟[J]. 应用地球物理, 2018, 15(1): 35-45.
[2] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[3] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[4] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[5] 常锁亮, 刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
[6] 杜启振, 孙瑞艳, 秦童, 朱钇同, 毕丽飞. 多分量联合逆时偏移最佳匹配层吸收边界[J]. 应用地球物理, 2010, 7(2): 166-173.
[7] 周辉, 王尚旭, 李国发, 沈金松. 复杂构造地震波场分析[J]. 应用地球物理, 2010, 7(2): 185-192.
[8] 秦臻, 卢明辉, 郑晓东, 姚姚, 张才, 宋建勇. 弹性波正演模拟中改进的非分裂式PML实现方法[J]. 应用地球物理, 2009, 6(2): 113-121.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司