APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (3): 205-216    DOI: 10.1007/s11770-009-0032-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
位场波数域转换算法误差方程及其应用
柴玉璞
中国石油集团东方地球物理公司,涿州 072751
A-E equation of potential field transformations in the wavenumber domain and its application
Chai Yu-pu1
1. Bureau of Geophysical Prospecting, CNPC, Zhuozhou, 072751, China.
 全文: PDF (964 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 偏移抽样理论是本文作者建立的更普遍的傅立叶变换数值计算的理论。基于这一理论,作者在现文中导出了位场波数域转换算法误差方程,该方程既给出了更灵活的位场波数域转换算法,并且揭示了位场波数域转换中的误差规律。源于该方程的DFT0η η(0.5, 0.5)化极技术可以大大提高低纬度(包括磁赤道)磁异常化极的稳定性和分辨率。该方程所揭示的波数域位场高通转换中边缘振荡的规律性(来源、形成机理和基本性质),从理论上指出了改善现有高通转换位场数据拓边技术效果的途径。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴玉璞
关键词位场转换   波数域   傅立叶变换   偏移抽样理论   算法误差方程   DFT0&eta   &eta   (0.5, 0.5)技术   位场数据拓边原理     
Abstract: A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η?(0.5,?0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.
Key wordsPotential field transformation   Fourier transform   shift sampling theory   A-E equation, DFT0&eta   &eta   (0.5, 0.5) algorithm   
收稿日期: 2009-06-23;
引用本文:   
柴玉璞. 位场波数域转换算法误差方程及其应用[J]. 应用地球物理, 2009, 6(3): 205-216.
CHAI Yu-Pu. A-E equation of potential field transformations in the wavenumber domain and its application[J]. APPLIED GEOPHYSICS, 2009, 6(3): 205-216.
 
[1] Chai, Y. P., 1997a, Shift sampling theory of Fourier transform computation: Science in China E, 40, 21 - 27.
[2] Chai, Y. P., 1997b, Shift sampling theory and its application (in Chinese): China Petroleum Industry Press.
[3] Hansen, R. O. and Pawlowski, R. S., 1989, Reduction to the pole at low latitudes by Wiener filtering: Geophysics, 54, 1607 - 1613.
[4] Keating, P., and Zerbo, L., 1996, An improved technique for reduction to the pole at low latitudes: Geophysics, 61, 131 - 137.
[5] Mendonca, C. A. and Silva, J. B. C., 1993, A stable truncated series approximation of the reduction to the pole operator: Geophysics, 58, 1084 - 1089.
[6] Pearson, W. C., and Skinner, C. M., 1982, Reduction-to-the-pole of low latitude magnetic anomalies: 52nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 356 - 358.
[1] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[2] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[3] 张华, 陈小宏, 吴信民. 基于压缩感知理论与傅立叶变换的地震数据重建[J]. 应用地球物理, 2013, 10(2): 170-180.
[4] 陈学华, 杨威, 贺振华, 钟文丽, 文晓涛. 三维多尺度体曲率的算法及应用[J]. 应用地球物理, 2012, 9(1): 65-72.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司