APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (1): 89-106    DOI: 10.1007/s11770-014-0418-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于八阶NAD算子的保辛分部Runge-Kutta方法及其波场模拟
张朝元1,2,马啸2,杨磊2,宋国杰3,4
1.大理学院数学与计算机学院,大理 671003
2.清华大学数学科学系,北京 100084
3.西南石油大学理学院,成都 610500
4.清华大学计算机系,北京 100084
Symplectic partitioned Runge–Kutta method based on the eighth-order nearly analytic discrete operator and its wavefield simulations
Zhang Chao-Yuan1,2, Ma Xiao2, Yang Lei2, and Song Guo-Jie3,4
1. College of Mathematics and Computer, Dali University, Dali 671003, China.
2. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.
3. School of Science, Southwest Petroleum University, Chengdu 610500, China.
4. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.
 全文: PDF (1632 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于声波方程扩充的哈密尔顿系统,本文给出了空间精度为八阶的近似解析离散化 (NAD)保辛分部Runge-Kutta方法,简称八阶NSPRK方法。该方法采用八阶精度的近似解析离散算子近似空间高阶偏微分算子,并使用二阶精度的辛分部Runge-Kutta方法进行时间离散。我们从理论和数值计算两个方面研究了八阶NSPRK方法的稳定性条件和数值频散关系,并同四阶NSPRK方法、八阶Lax-Wendroff (LWC) 方法和八阶交错网格 (SG) 方法进行了比较。结果表明八阶NSPRK方法压制数值频散的能力显著优于传统数值计算方法。与四阶NSPRK方法和传统四阶辛格式 (SPRK) 方法相比,八阶NSPRK方法具有最小的数值误差和最高的计算效率:在达到同样消除数值频散的前提下,八阶NSPRK方法的计算速度约为四阶NSPRK方法的2.5倍、为四阶SPRK方法的3.4倍;八阶NSPRK方法的存储量仅为四阶NSPRK方法的47.17%、为四阶SPRK方法的49.41%。在双层介质、非均匀介质和Marmousi等复杂速度模型中,八阶NSPRK方法模拟得到的波场快照非常清晰,无可见数值频散。这些结果表明,八阶NSPRK方法在粗网格条件下能有效地压制数值频散,从而能够极大地节省计算内存,提高计算速度。总体而言,八阶NSPRK方法是一种在地震探测领域和地震学研究中有着巨大应用潜力的数值计算方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张朝元
马啸
杨磊
宋国杰
关键词保辛分部Runge-Kutta方法   近似解析离散化算子   数值频散   波场模拟     
Abstract: We propose a symplectic partitioned Runge–Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic wave equation. Known as the eighth-order NSPRK method, this technique uses an eighth-order accurate nearly analytic discrete (NAD) operator to discretize high-order spatial differential operators and employs a second-order SPRK method to discretize temporal derivatives. The stability criteria and numerical dispersion relations of the eighth-order NSPRK method are given by a semi-analytical method and are tested by numerical experiments. We also show the differences of the numerical dispersions between the eighth-order NSPRK method and conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax–Wendroff correction (LWC) method and the eighth-order staggered-grid (SG) method. The result shows that the ability of the eighth-order NSPRK method to suppress the numerical dispersion is obviously superior to that of the conventional numerical methods. In the same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 times faster than the fourth-order SPRK, and the memory requirement is only approximately 47.17% of the fourth-order NSPRK method and 49.41 % of the fourth-order SPRK method, which indicates the highest computational efficiency. Modeling examples for the two-layer models such as the heterogeneous and Marmousi models show that the wavefields generated by the eighth-order NSPRK method are very clear with no visible numerical dispersion. These numerical experiments illustrate that the eighth-order NSPRK method can effectively suppress numerical dispersion when coarse grids are adopted. Therefore, this method can greatly decrease computer memory requirement and accelerate the forward modeling productivity. In general, the eighth-order NSPRK method has tremendous potential value for seismic exploration and seismology research.
Key wordsSymplectic partitioned Runge–Kutta method   Nearly analytic discrete operator   Numerical dispersion   Wavefield simulation   
收稿日期: 2013-10-08;
基金资助:

本研究由国家自然科学基金项目(编号:41230210和41204074)、云南省教育厅科学研究基金重点项目(编号:2013Z152)和Statoil company资助项目(编号:4502502663)资助。

引用本文:   
张朝元,马啸,杨磊等. 基于八阶NAD算子的保辛分部Runge-Kutta方法及其波场模拟[J]. 应用地球物理, 2014, 11(1): 89-106.
ZHANG Chao-Yuan,MA Xiao,YANG Lei et al. Symplectic partitioned Runge–Kutta method based on the eighth-order nearly analytic discrete operator and its wavefield simulations[J]. APPLIED GEOPHYSICS, 2014, 11(1): 89-106.
 
[1] Cerveny, V., and Firbas, P., 1984, Numerical modeling and inversion of travel-time seismic body waves in inhomogeneous anisotropic media: Geophys. J. R. Astr. Soc., 76, 41 - 51.
[2] Chapman, C. H., and Shearer, P. M., 1989, Ray tracing in azimuthally anisotropic media-II: quasi shear wave coupling: Geophys. J., 96, 65 - 83.
[3] Chen, K. H., 1984, Propagating numerical model of elastic wave in anisotropic in homogeneous media-finite element method: Symposium of 54th SEG, 54, 631 - 632.
[4] Chen, X. F., 1993, A systematic and efficient method of computing normal modes for multi-layered half space: Geophys. J. Int., 115, 391 - 409.
[5] Dablain, M. A., 1986, The application of high-order differencing to scalar wave equation: Geophysics, 51, 54 - 66.
[6] Fei, T., and Larner, K., 1995, Elimination of numerical dispersion in finite difference modeling and migration by flux-corrected transport: Geophysics, 60, 1830 - 1842.
[7] Huang, B. S., 1992, A program for two-dimensional seismic wave propagation by the pseudo-spectrum method: Computat. Geosci., 18, 289 - 307.
[8] Kelly, K. R., Wave, R. W., and Treitel, S., 1976, Synthetic seismograms: a finite-difference approach: Geophysics, 41, 2 - 27.
[9] Komatitsch, D., and Vilotte, J. P., 1998, The spectral element method: an efficient tool to simulate the seismic responses of 2D and 3D geological structures: B. Seismol. Soc. Am., 88, 368 - 392.
[10] Kondoh, Y., Hosaka, Y., and Ishii, K., 1994, Kernel optimum nearly-analytical discretization algorithm applied to parabolic and hyperbolic equations: Comput. Math. Appl., 27(3), 59 - 90.
[11] Li, X. F., Li, Y. Q., Zhang, M. G., et al., 2011a, Scalar seismic wave equation modeling by a multisymplectic discrete singular convolution differentiator method: B. Seismol. Soc. Am., 101(4), 1710 - 1718.
[12] Li, Y. Q., Li, X. F., and Zhang, M. G., 2012, The elastic wave fields modeling by symplectic discrete singular convolution differentiator method: Chinese J. Geophys. (in Chinese), 55(5), 1727 - 1731.
[13] Li, Y. Q., Li, X. F., and Zhu, T., 2011b, The seismic scalar wave field modeling by symplectic scheme and singular kernel convolutional differentiator: Chinese J. Geophys. (in Chinese), 54(7), 827 - 1834.
[14] Ma, X., Yang, D. H., and Liu, F. Q., 2011, A nearly analytic symplectically partitioned Runge-Kutta method for 2-D seismic wave equations: Geophys. J. Int, 187, 480 - 496.
[15] Ma, X., Yang, D. H., and Zhang, J. H., 2010, Symplectic partitioned Runge-Kutta method of solving the acoustic wave equation: Chinese J. Geophys. (in Chinese), 53(8), 1993 - 2003.
[16] Qin, M. Z., and Zhang, M. Q., 1990, Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations: Comput. Math. Appl., 19, 51 - 62.
[17] Ruth, R. D., 1983, A canonical integration technique: IEEE Trans. Nucl. Sci. NS-30, No.4, 2669 - 2671.
[18] Tong, P., Yang, D. H., Hua, B. L., et al., 2013, A high-order stereo-modeling method for solving wave equations: B. Seismol. Soc. Am. 103(2), 811 - 833.
[19] Yang, D. H., Liu, E., Zhang, Z. J., et al., 2002, Finite-difference modelling in two-dimensional anisotropic media using a flux-corrected transport technique: Geophys. J. Int., 148, 320 - 328.
[20] Yang, D. H., Teng, J. W., Zhang, Z. J., et al., 2003, A nearly-analytic discrete method for acoustic and elastic wave equations in anisotropic media: B.Seismol. Soc. Am., 93(2), 882 - 890.
[21] Zhang, Z. J., Wang, G. J., and Harris, J. M., 1999, Multi-component wave-field simulation in viscous extensively dilatancy anisotropic media: Phys. Earth Planet. Inter., 114, 25 - 38.
[22] Zheng, H. S., Zhang, Z. J., and Liu, E., 2006, Nonlinear seismic wave propagation in anisotropic media using flux-corrected transport technique: Geophys. J. Int., 165, 943 - 956.
[1] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[2] 杨皓星, 王红霞. 用于地震波场模拟的PML边界衰减因子研究[J]. 应用地球物理, 2013, 10(1): 63-70.
[3] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 6(1): 57-65.
[4] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 7(1): 57-65.
[5] 杜启振, 李宾, 侯波. 横向各向同性介质紧致交错网格有限差分波场模拟[J]. 应用地球物理, 2009, 6(1): 42-49.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司