APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (1): 80-88    DOI: 10.1007/s11770-014-0408-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
实际气体状态下模拟气枪单枪激发信号研究
王风帆,刘怀山
中国海洋大学海底科学与探测技术教育部重点实验室,青岛 266100
Simulating the signature produced by a single airgun under real gas conditions
Wang Feng-Fan1 and Liu Huai-Shan1
1. Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao 266100, China.
 全文: PDF (713 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 以Ziolkowski提出的算法为基础,提出更为准确的气枪震源信号模拟模型。模型引入范德瓦尔斯方程和准静态开放式热力学系统,考虑了气体和水之间的热交换作用、枪口节流作用和气泡上浮因?素,并讨论了海面反射对信号的影响,给出了模拟计算过程,最终获得了改进的气枪信号模拟模型。利用模型进行实验,结果表明:(1)海水温度与震源信号能量成正比,与子波信号的信噪比成反比;(2)海面反射造成的陷波效应受实际条件下的海面反射系数和震源沉放深度的影响;(3)气枪的工作压力较高,超出理想气体状态方程的适用范围,应用范式方程可提高模型准确度;(4)改进模型所模拟的气枪子波与气枪激发的实际子波十分吻合。能够精确模拟单枪信号的模型是研究和模拟气枪枪阵信号的基础。现有的大部分模型假设所产生气泡内的气体为理想气体,但由于气枪的工作压力很高,这种假设会导致一定的误差。为了能够精确地模拟气枪信号,在齐奥科斯基算法的基础上,应用范德瓦尔斯方程,建立了新的模型。模型中还引入了准静态开放式热力学系统,考虑了气体和水之间的热交换作用、枪口节流作用和气泡上浮因素,并讨论了海面反射对信号的影响。利用建立的模型进行实验发现:(1)海水温度与震源信号能量成正比,与子波信号的信噪比成反比;(2)海面反射造成的陷波效应受实际条件下的海面反射系数和震源沉放深度的影响;(3)气枪的工作压力较高,超出理想气体状态方程的适用范围,应用范式方程可提高模型准确度;(4)改进模型所模拟的气枪子波与气枪激发的实际子波十分吻合。这些都证明了本文提出的模型能够精确地模拟气枪单枪信号。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王风帆
刘怀山
关键词范式气体   枪口节流   气泡上浮   热交换   海面反射     
Abstract: Models that simulate the signature of single airguns form the basis for modeling the signals of airgun arrays. Most of the existing models assume that the air inside the produced bubble is ideal gas, which may lead to errors because of the high operating pressure of the airguns. In this study, we propose a model that precisely simulates the signals of single airguns by applying the Van der Waals equation based on the Ziolkowski algorithm. We also consider a thermodynamically open quasistatic system, the heat transition between water and gas, the throttling effect of the port and the bubble rise, and the effect of the sea surface. Modeling experiments show that (1) the energy of the source increases and the signal-to-noise ratio of the signature wavelet decreases with increasing seawater temperature, (2) the reflection coefficient of the sea surface under the actual state and depth of the source affects the notch caused by the surface reflection, (3) the computed signature with the proposed model is very close to the actual data, and (4) the proposed model accurately simulates the signature of single airguns.
Key wordsVan der Waals gas   port throttling   bubble rise   heat transition   surface reflection   
收稿日期: 2012-12-22;
基金资助:

本研究由国家自然科学基金(编号:41176077和41230318)和国家973项目(编号:2009CB219505)资助。

引用本文:   
王风帆,刘怀山. 实际气体状态下模拟气枪单枪激发信号研究[J]. 应用地球物理, 2014, 11(1): 80-88.
WANG Feng-Fan,LIU Huai-Shan. Simulating the signature produced by a single airgun under real gas conditions[J]. APPLIED GEOPHYSICS, 2014, 11(1): 80-88.
 
[1] Alexander, O. M. G., 2000, An acoustic modeling study of seismic air gun noise in Queen Charlotte Basin: University of Victoria.
[2] Cheremisinoff, N. P., 1979, Applied fluid flow measurement: Marcel Dekker Inc., New York.
[3] Chu, D. L., Jiang, H. Y., and Chen, Y., 2006, Improvement of mayer formula based on van der waals gas: Physics and Engineering (in Chinese), 16(2), 15 - 16.
[4] Gilmore, F. R., 1952, Collapse of a spherical bubble: Hydrodynamics Laboratory, California Institute Of Technology, Report No. 26 - 4.
[5] Guerriero, V., 2012, Power law distribution: Method of multi-scale inferential statistics: Journal of Modern Mathematics Frontier, 1, 21 - 28.
[6] Herring, C., 1941, Office of scientific research and development report No. 236 (NDRC C4-sr 20 - 010).
[7] Huang, S. Q., Nie, J. R., and Shen, X. J., 2000, Thermal Tutorial, 2nd Version: Higher Education Press, Beijing, 17 - 305.
[8] Input/Output, Inc., 2001, 750 Cubic Inch Sleeve Gun Array Configuration Catalog: Input/Output, Inc. Stanford, Texas
[9] Johnson, D. T., 1994, Understanding air-gun bubble behavior: Geophysics, 59(11), 1729 - 1734.
[10] Keller, J. B., and Kolodner, I. I., 1956, Damping of underwater explosion bubble oscillation: Journal of Applied Physics, 27, 1152 - 1161.
[11] Landr?, M., and Sollie, R., 1992, Source signature determination by inversion: Geophysics, 57(12), 1633 - 1640.
[12] Li, G. F., Cao, M. Q., Chen, H. L., et al, 2010, Modeling air gun signature in marine seismic exploration considering multiple physical factors: Applied Geophysics, 7(2), 158 - 165.
[13] Liu, B., 2005, Numerical simulation of air-gun array and its application: Master thesis, Ocean University of China.
[14] Qin, Y. H., 2004, Physics tutorial, Thermotics, 2nd ed: Higher Education Press, Beijing, 40 - 43, 184 - 200.
[15] Rayleigh and Lord, 1917, On the pressure developed in a liquid during the collapse of a spherical cavity: Philosophical Magazine, 34, 94 - 99.
[16] Schulze-Gattermann, R., 1972, Physical aspects of the airpulser as a seismic energy source: Geophysical Prospecting, 20, 155 - 192.
[17] Tang, J., Wang, B. S., Ge, H. K., et al., 2009, Experiment and simulation of large capacity air-guns in deep structure exploration: Earthquake Research in China, 23(4), 1 - 11.
[18] Wang, L. M., 2010, Simulation study on signature stimulated by air-guns in conditions of van der waals gas: Chang’an University, China.
[19] Zhao, M. H., Qiu, X. L., Xia, S. H., et al., 2008, Large volume air-gun sources and its seismic waveform characters: Chinese Journal of Geophysics, (in Chinese), 51(2), 558 - 565.
[20] Zhou, B. H., and Liu, W. B., 1998, The development and application of air-gun source (1): Equipment for Geophysical Prospecting (in Chinese), 8(1), 1 - 6.
[21] Ziolkowski, A. M., 1970, A method for calculating the output pressure waveform from an air-gun: Geophysics, J. R. Astr., Soc., 21, 137 - 161.
[22] Ziolkowski, A. M., 1998, Measurement of air-gun bubble oscillations: Geophysics, 63(6), 2009 - 2024.
[1] 李国发, 曹明强, 陈浩林, 倪成洲. 考虑多种因素影响的海上地震勘探气枪震源单枪子波数值模拟[J]. 应用地球物理, 2010, 7(2): 158-165.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司