APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (1): 73-79    DOI: 10.1007/s11770-014-0411-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
信噪比数据体在标准层分析及断裂检测中的应用探讨
许辉群1,2,桂志先1,2
1. 油气资源与勘探技术教育部重点实验室(长江大学),湖北,武汉430100
2. 长江大学地球物理与石油资源学院,湖北,武汉430100
Signal-to-noise ratio application to seismic marker analysis and fracture detection
Xu Hui-Qun1,2 and Gui Zhi-Xian1,2
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Hubei, Wuhan 430100, China.
2. School of Geophysics & Oil Resources, Yangtze University, Hubei, Wuhan 430100, China.
 全文: PDF (928 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 高信噪比地震资料是高精度储层预测的基础,而地震噪声的消除存在于地震资料处理的各个环节中,但这些中间成果未加以充分利用而造成人力及财力的浪费是必须考虑的实际问题。针对这一问题,利用物理意义明确的频率域估算地震资料信噪比方法对地震数据进行计算,采用改进的频谱法计算信噪比,并优选信噪比计算的关键参数,以及给出信噪比数据体的实现过程。经实际资料中的应用发现:地震解释标准层段信噪比总体较高;断裂发育区信噪比数值低。而这些断裂发育区域只有通过构造分析进行推断,而不能在地震剖面上直接识别。信噪比的应用为地震标准层及断裂的检测提供了一个新的方法,它包含了与地层及断裂有关的信息。该方法在构造变化识别、断层及裂缝检测方面取得了成果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
许辉群
桂志先
关键词断裂检测   标准层   信噪比   滤波     
Abstract: Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data. 
Key wordsfracture detection   seismic marker   SNR   filtering   
收稿日期: 2013-06-20;
引用本文:   
许辉群,桂志先. 信噪比数据体在标准层分析及断裂检测中的应用探讨[J]. 应用地球物理, 2014, 11(1): 73-79.
XU Hui-Qun,GUI Zhi-Xian. Signal-to-noise ratio application to seismic marker analysis and fracture detection[J]. APPLIED GEOPHYSICS, 2014, 11(1): 73-79.
 
[1] Abma, R., and Claerbout, J., 1995, Lateral prediction for noise attenuation by tx and fx techniques, Geophysics: 60(6), 1887 - 1896.
[2] Alsdorf, D., 1997, Noise reduction in seismic data using Fourier correlation coefficient filtering: Geophysics, 62(5), 1617 - 1627.
[3] aacute;lvarez-Díaz, M., López-Valcarce, R., and Mosquera, C., 2010, SNR estimation for multilevel constellations using higher-order moments: IEEE Transactions on Signal Processing, 58(3), 1515 - 1526.
[4] Bagaini, C., Bunting, T., El-Emam, A., Laake, A., and Strobbia, C., 2010, Land seismic techniques for high-quality data: Oilfield Review, 22(2).
[5] Bekara, M., and van der Baan, M., 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74(5), V89 - V98.
[6] Canales, L. L., 1984, Random noise reduction: 54th Ann. Inter nat Mtg. Soc. Expl. Geophys., Expanded Abstracts, 525 - 527.
[7] Chen, Z. D., Duan, T. Y., and Zhu, G. S., 1994, Improvement of singular value decomposition and the application: Oil Geophysical Prospecting, 29(6), 783 - 792.
[8] Dash, B. P., and Obaidullah, K. A., 1970, Determination of signal and noise statistics using correlation theory: Geophysics, 35(1), 24 - 32.
[9] Fountain, D. M., Hurich, C. A., and Smithson, S. B., 1984, Seismic reflectivity of mylonite zones in the crust: Geology, 12(4), 195 - 198.
[10] Fu, L. Y., 2009, Quantitative assessment of the complexity of geological structures in terms of seismic propagators: Sci China Ser D-Earth Sci, 39(9), 1179 - 1190.
[11] Herrmann, F. J., and Hennenfent, G., 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International, 173(1), 233 - 248.
[12] Hornbostel, S., 1991, Spatial prediction filtering in the tx and fx domains: Geophysics, 56(12), 2019 - 2026.
[13] Hu, T. Y., Wang, R. Q., and White, R. E., 2000, Beam-forming in seismic data Processing: Chinese Journal of Geophysics, 43(1), 105 - 115.
[14] Kelamis, P. G., and Verschuur, D. J., 2000, Surface-related multiple elimination on land seismic data-Strategies via case studies: Geophysics, 65(3), 719 - 734.
[15] Larner, K., Chambers, R., Yang, M., Lynn, W., and Wai, W., 1983, Coherent noise in marine seismic data. Geophysics, 48(7), 854 - 886.
[16] Li, Y., Yang, B. J., Lin, H. B., Yuan, Y., Hao, X., and Liu, X. H., 2008, Characteristics of hyperbolic time-distance relation filter in seismic prospecting and its ability increasing signal-to-noise ratio: Chinese Journal of Geophysics, 51(5), 1557 - 1566.
[17] Lu, Y. H., and Lu, W. K., 2009, Edge-preserving polynomial fitting method to suppress random seismic noise: Geophysics, 74(4), V69 - V73.
[18] Neelamani, R., Baumstein, A. I., Gillard, D. G., Hadidi, M. T., and Soroka, W. L., 2008, Coherent and random noise attenuation using the curvelet transform: The Leading Edge, 27(2), 240 - 248.
[19] Rictsch, E., 1980, Estimation of the signal-to-noise ratio of seismic data with an application on to stacking: Geophysics prospecting, 28(4), 531 - 550.
[20] Sejdi?, E., Djurovi?, I., and Stankovi?, L., 2011, Fractional Fourier transform as a signal processing tool: An overview of recent developments: Signal Processing, 91(6), 1351 - 1369.
[21] Yu, S. P., Zha, Z. Q., and Liang, J., 1984, Frequency reinforcement filtering: Oil Geophysical Prospecting, 19(3), 200 - 209.
[22] Zhang, J. H., Zang, S. T., Zhou, Z. X., Wang, J., Shan, L. Y., Xu, H., Fu, J. R., Yu, H. B., and Bu, C. C., 2009, Quantitative computation and comparison of S/N ratio in seismic data: Oil Geophysical Prospecting, 44(4), 48-486.
[1] 闫建平,何旭,胡钦红,梁强,唐洪明,冯春珍,耿斌. 湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例[J]. 应用地球物理, 2018, 15(2): 151-164.
[2] 曹中林,曹俊兴,巫芙蓉,何光明,周强,吴育林. 基于分数阶傅里叶变换的混合Cadzow滤波法[J]. 应用地球物理, 2018, 15(2): 271-279.
[3] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[4] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[5] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[6] 张代磊,黄大年,于平,袁园. 基于平移不变量小波的全张量重力梯度数据滤波[J]. 应用地球物理, 2017, 14(4): 606-619.
[7] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[8] 王德营,凌云. 基于相移和相位滤波的面波压制方法[J]. 应用地球物理, 2016, 13(4): 614-620.
[9] 范景文,李振春,张凯,张敏,刘学通. 基于构造导向滤波的多震源最小二乘逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 491-499.
[10] Seyyed Ali Fa’al Rastegar, Abdolrahim Javaherian, Naser Keshavarz Farajkhah. 利用改进的共偏移距-共反射面(COCRS)叠加压制地滚波?[J]. 应用地球物理, 2016, 13(2): 353-363.
[11] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[12] 蔡涵鹏, 贺振华, 李亚林, 何光明, 邹文, 张洞君, 刘璞. 边界和振幅特性保持的自适应噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 289-300.
[13] 张固澜, 王熙明, 贺振华, 曹俊兴, 李可恩, 容娇君. 零偏移距VSP资料层Q反演及其应用研究[J]. 应用地球物理, 2014, 11(2): 235-244.
[14] 王汉闯, 陈生昌, 张博, 佘德平. 多震源混合地震数据分离方法[J]. 应用地球物理, 2013, 10(3): 251-264.
[15] 袁园, 黄大年, 余青露, 耿美霞. 全张量重力梯度数据滤波处理[J]. 应用地球物理, 2013, 10(3): 241-250.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司