APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (1): 9-22    DOI: 10.1007/s11770-014-0413-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测
于豪1,巴晶1,Carcione Jose2,李劲松1,唐刚1,张兴阳1,何新贞3,欧阳华3
1. 中国石油勘探开发研究院,北京 100083
2. Istituto Nazionale di Oceanografia edi Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, Sgonico, Trieste 34010, Italy
3. 中国石油阿姆河天然气公司,北京 102200
Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection
Yu Hao1, Ba Jing1, Carcione Jose2, Li Jin-Song1, Tang Gang1, Zhang Xing-Yang1, He Xin-Zhen3, and Ouyang Hua3
1. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China.
2. Istituto Nazionale di Oceanografia edi Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, Sgonico, Trieste 34010, Italy.
3. Amu Darya Petroleum Company Ltd., CNPC, Beijing 102200, China.
 全文: PDF (1605 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在非均质天然气藏中,天然气一般呈细小“斑块状”分布于含水岩石骨架内。这种非均质性,即“斑块状饱和”,会引起显著的地震波速度频散和能量衰减现象。为了建立地震响应和流体类型之间的联系,本文进行了碳酸盐岩岩石物理建模。首先利用CT扫描分析部分饱和岩石中的流体分布,然后预测不同频率下波响应与岩性、孔隙流体基本性质之间的定量关系,基于岩石薄片分析孔隙结构和地震反演数据制作岩石物理图板,并将这种方法应用于阿姆河右岸地区的灰岩气藏,基于叠后阻抗反演和叠前弹性参数反演,采用地震数据估算岩石孔隙度与含气饱和度,预测结果与多井试气结果吻合。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
于豪
巴晶
Carcione Jose
李劲松
唐刚
张兴阳
何新贞
欧阳华
关键词岩石物理建模   Biot–Rayleigh理论   非均质性   孔隙度   饱和度   速度频散   气藏检测     
Abstract: In heterogeneous natural gas reservoirs, gas is generally present as small patch-like pockets embedded in the water-saturated host matrix. This type of heterogeneity, also called “patchy saturation”, causes significant seismic velocity dispersion and attenuation. To establish the relation between seismic response and type of fluids, we designed a rock physics model for carbonates. First, we performed CT scanning and analysis of the fluid distribution in the partially saturated rocks. Then, we predicted the quantitative relation between the wave response at different frequency ranges and the basic lithological properties and pore fluids. A rock physics template was constructed based on thin section analysis of pore structures and seismic inversion. This approach was applied to the limestone gas reservoirs of the right bank block of the Amu Darya River. Based on poststack wave impedance and prestack elastic parameter inversions, the seismic data were used to estimate rock porosity and gas saturation. The model results were in good agreement with the production regime of the wells.
Key wordsRock physics modeling   Biot–Rayleigh theory   heterogeneity   porosity   saturation   velocity dispersion   gas reservoir detection   
收稿日期: 2014-02-11;
基金资助:

本研究由国家自然科学基金(编号:41104066)、国家973项目课题(编号:2014CB239006)、国家油气重大专项(编号:2011ZX05004-003和2011ZX05029-003)和中国石油天然气集团公司“十二五”基础研究项目(编号:2011A-3601)联合资助。

引用本文:   
于豪,巴晶,Carcione Jose等. 非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测[J]. 应用地球物理, 2014, 11(1): 9-22.
YU Hao,BA Jing,Carcione Jose et al. Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection[J]. APPLIED GEOPHYSICS, 2014, 11(1): 9-22.
 
[1] Adam, L., Batzle, M., and Brevik, I., 2006, Gassmann’s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies: Geophysics, 71(6), F13 - F183.
[2] Ba, J., 2010, Wave propagation theory in double-porosity medium and experimental analysis on seismic responses: Scientia Sinica - Phys, Mech & Astron (in Chinese), 40(11), 1398 - 1409.
[3] Ba, J., Cao, H., Carcione, J. M., Tang, G., Yan, X, F,, Sun, W. T., and Nie, J. X., 2013a, Multiscale rock-physics templates for gas detection in carbonate reservoirs: Journal of Applied Geophysics, 93, 77 - 82.
[4] Ba, J., Cao, H., and Yao, F. C., 2010, Velocity dispersion of P-waves in sandstone and carbonate: Double-porosity theory and local fluid flow theory: 80th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, Expanded Abstracts, 2557 - 2563.
[5] Ba, J., Cao, H., Yao, F. C., and Nie, J. X., 2008b, Double-porosity rock model and Squirt flow for laboratory frequency band: Appl. Geophys., 5(4), 261 - 276.
[6] Ba, J., Cao, H., Yao, F. C., Yang, Z. F., and Nie, J. X., 2009, Pore heterogeneity induces double-porosity in Guang’an sandstone: CPS/SEG Beijing 2009, Beijing, China.
[7] Ba, J., Carcione, J. M., Cao, H., Du, Q. Z., Yuan, Z. Y., and Lu, M. H., 2012, Velocity dispersion and attenuation of P waves in partially-saturated rocks: Wave propagation equations in double-porosity medium: Chinese J. Geophys. (in Chinese), 55(1), 219 - 231.
[8] Ba, J., Carcione, J. M., and Nie, J. X., 2011, Biot-Rayleigh theory of wave propagation in double-porosity media: J. Geohpys. Res., 116, B06202, doi: 10.1029/2010JB008185.
[9] Ba, J., Nie, J. X., Cao, H., and Yang, H. Z., 2008a, Mesoscopic fluid flow simulation in double-porosity rocks: Geophys. Res. Lett., 35, L04303, doi: 10.1029/2007GL032429.
[10] Ba, J., Yan, X. F., Chen, Z. Y., et al., 2013b, Rock physics model and gas saturation inversion for heterogeneous gas reservoirs: Chinese J. Geophys. (in Chinese), 56(5), 1696 - 1706.
[11] Batzle, M., Han, D., and Hofmann, R., 2006, Fluid mobility and frequency-dependent seismic velocity - Direct measurements: Geophysics, 71(1), N1 - N9.
[12] Berryman, J. G., and Wang, H. F., 1995, The elastic coefficients of double-porosity models for fluid transport in jointed rock: J. Geophys. Res., 100, 24611 - 24627.
[13] Berryman, J. G., and Wang, H. F., 2000, Elastic wave propagation and attenuation in a double-porosity dual-permeability medium: Int. J. Rock Mech. Min. Sci., 37, 63 - 78.
[14] Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low-frequency range: J. Acoust. Soc. Am., 28(2), 168 - 178.
[15] Biot, M. A., 1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid: II. Higher frequency range: J. Acoust.Soc. Am., 28(2), 179 - 191.
[16] Cadoret, T., Marion, D., and Zinszner, B., 1995, Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones: J. Geophys. Res., 100, 9789 - 9803.
[17] Carcione, J. M., 2007, Wavefields in real media. Theory and numericalsimulation of wavepropagation in anisotropic, anelastic, porous and electromagnetic media (Second edition): Elsevier.
[18] Carcione, J. M., Gurevich, B., Santos, J. E., and Picotti, S., 2013, Angular and frequency dependent wave velocity and attenuation in fractured porous media: Pure and Applied Geophysics, doi: 10.1007/s00024-012-0636-8.
[19] Carcione, J. M., Helle, H. B., and Pham, N. H., 2003, White’s model for wave propagation in partially saturated rocks: Comparison with poroelastic numerical experiments: Geophysics, 68, 1389 - 1398.
[20] Carcione, J. M., and Picotti, S., 2006, P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties: Geophysics, 71(3), O1 - O8.
[21] Carcione, J. M., Morency, C., and Santos, J. E., 2010, Computational poroelasticity - A review: Geophysics, 75, A229 - A243.
[22] Chen, X. L., and Tang, X. M., 2012, Numerical study on the characteristics of acoustic logging response in the fluid-filled borehole embedded in crack-porous medium: Chinese J. Geophys. (in Chinese), 55(6), 2129 - 2140.
[23] Dutta, N. C., and Odé, H., 1979b, Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model), Part I-Biot theory: Geophysics, 44, 1777 - 1788.
[24] Dutta, N. C., and Seriff, A. J., 1979a, On White’s model of attenuation in rocks with partial gas saturation: Geophysics, 44(11), 1806 - 1812.
[25] Dvorkin, J., and Nur, A., 1993, Dynamic poroelasticity: A unified model with the Squirt and the Biot mechanisms: Geophysics, 58(4), 524 - 533.
[26] Gassmann, F,. 1951, über die Elastizit?t por?ser Medien: Vier. der Natur. Gesellschaft in Zürich, 96, 1 - 23.
[27] Gurevich, B., Zyrianov, V. B., and Lopatnikov, S. L., 1997, Seismic attenuation in finely layered porous rocks: Effects of fluid flow and scattering: Geophysics, 62(1), 319 - 324.
[28] Johnson, D. L., 2001, Theory of frequency dependent acoustics in patchy saturated porous media: J. Acoust. Soc. Am., 110(2), 682 - 694.
[29] Johnson, D. L., Koplik, J., and Dashen, R., 1987, Theory of dynamic permeability and tortuosity in fluid-saturated porous media: J. Fluid Mech., 176, 379 - 402.
[30] Liu, J., Ma, J. W., and Yang, H. Z., 2009, Research on dispersion and attenuation of P wave in periodic layered-model with patchy saturation: Chinese J. Geophys. (in Chinese), 52(11), 2879 - 2885.
[31] Liu, J., Ma, J. W., and Yang, H. Z., 2010, Research on P-wave’s propagation in White’s sphere model with patchy saturation: Chinese J. Geophys. (in Chinese), 53(4), 954 - 962.
[32] Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The rock physics handbook - Tools for seismic analysis of porous media (2nd Edition), Cambridge University Press.
[33] Müller, T. M., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review: Geophysics, 75(5), 75A147 - 75A164.
[34] Nie, J. X., Ba, J., Yang, D. H., Yan, X. F., Yuan, Z. Y., and Qiao, H. P., 2012, BISQ model based on a Kelvin-Voigt viscoelastic frame in a partially saturated porous medium: Applied Geophysics, 9(2), 213 - 222.
[35] Nie, J. X., Yang, D. H., and Yang, H. Z., 2004, Inversion of reservoir parameters based on the BISQ model in partially saturated porous media: Chinese J. Geophys. (in Chinese), 47(6), 1101 - 1105.
[36] Pride, S. R., Berryman, J. G., and Harris, J. M., 2004, Seismic attenuation due to wave-induced flow: J. Geophys. Res., 109, B01201, doi: 10.1029/2003JB002639.
[37] Rayleigh, L., 1917, On the pressure developed in a liquid during the collapse of a spherical cavity: Philos. Mag., 34, 94 - 98.
[38] Roehl, P. O., and Choquette, P. W., 1985, Carbonate Petroleum Reservoirs, New York, Springer - Verlag.
[39] Sams, M. S., Neep, J. P., Worthington, M. H., and King, M. S., 1997, The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks: Geophysics, 62, 1456 - 1464.
[40] Santos, J. E., Corberó, J. M., and Douglas, J., 1990a, Static and dynamic behavior of a porous solid saturated by a two-phase fluid: J. Acoust. Soc. Am., 87, 1428 - 1438.
[41] Santos, J. E., Douglas, J., Corberó, J. M., and Lovera, O. M., 1990b, A model for wave propagation in a porous medium saturated by a two-phase fluid: J. Acoust. Soc. Am., 87, 1439 - 1448.
[42] Sun, W. T., Ba, J., Muller, T. M., Carcione, J. M., Cao, H., Du, Q. Z., and Yan, X. F., 2012, P-wave dispersion and attenuation in patchy-saturated Rocks. White, Dutta and Biot-Rayleigh theories: 74th EAGE Expanded Abstracts.
[43] Toms, J., Müller, T. M., Ciz, R., et al., 2006, Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks: Soil Dynamics and Earthquake Engineering, 26(6 - 7), 548 - 565.
[44] White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40(2), 224 - 232.
[45] Xu, S. Y., and White, R. E., 1995, A physical model for shear-wave velocity prediction: Geophysical Prospecting, 44, 687 - 717.
[46] Zhao, H. B., Wang, X. M., Chen, S. M., and Li, L. L., 2010, Acoustic responses characteristics of unsaturated porous media: Science China Physics, Mechanics and Astronomy, 53, 1388 - 1396.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[3] 檀文慧,巴晶,郭梦秋,李辉,张琳,于庭,陈浩. 致密油粉砂岩脆性特征实验分析研究[J]. 应用地球物理, 2018, 15(2): 175-187.
[4] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[5] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[6] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[7] 刘杰,刘江平,程飞,王京,刘肖肖 . 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
[8] 张军华,李军,肖文,谭明友,张云银,崔世凌,曲志鹏. 基于速度频散因子表征的CO2驱地震监测方法[J]. 应用地球物理, 2016, 13(2): 307-314.
[9] 马劲风,李琳,王浩璠,谭明友,崔世凌,张云银,曲志鹏,贾凌云,张树海. CO2地质封存地球物理监测技术[J]. 应用地球物理, 2016, 13(2): 288-306.
[10] 曹呈浩,张宏兵,潘益鑫,滕新保. 中观局域流过渡频率及其与衰减峰值频率的联系研究[J]. 应用地球物理, 2016, 13(1): 156-165.
[11] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[12] 凌云, 韩立国, 张益明. 地震波在孔隙介质中低频衰减现象的粘弹性特征分析及近似[J]. 应用地球物理, 2014, 11(4): 355-363.
[13] 孙文杰, 李宁, 武宏亮, 王克文, 张宫. 孔洞型储层测井饱和度解释方程的确定及应用[J]. 应用地球物理, 2014, 11(3): 257-268.
[14] 李雄炎, 秦瑞宝, 刘春成, 毛志强. 基于岩石导电效率建立碳酸盐岩储层饱和度的计算方法[J]. 应用地球物理, 2014, 11(2): 215-222.
[15] 郭玉倩, 马宏达, 石开波, 曹宏, 黄录忠, 姚逢昌, 胡天跃. 多孔颗粒上界限模型及其在塔里木碳酸盐岩中的应用[J]. 应用地球物理, 2013, 10(4): 411-422.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司