APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (1): 1-8    DOI: 10.1007/s11770-014-0415-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
两种类型微裂隙
Stuart Crampin1,2,高原3
1. British Geological Survey, Edinburgh EH9 3LA, Scotland UK
2. School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FW, Scotland UK
3. 地震科学研究院中国地震局, 北京 100036
Two species of microcrack
Stuart Crampin1,2 and Gao Yuan3
1. British Geological Survey, Edinburgh EH9 3LA, Scotland UK.
2. School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FW, Scotland UK. 
3. Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China.
 全文: PDF (309 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 我们确定了两类起源不同与分布不同的相互关联而又独立的微裂隙。一类是在实验室与微裂隙随应力增大而张开产生声发射有关的应力单元所测定的典型的高应力裂隙。另一类是间距密集的应力方向一致的流体饱和的微裂隙。横波分裂监测(SWS)表明微裂隙在上地壳、下地壳,以及地幔最上面400公里处的所有岩石中几乎随处可见。在有些情况下这两种类型的微裂隙可能是相互有关而又相似的(因此定名为“种类”),但通常基本性质是不同的,分布不同,其含义也不同。对油气勘探和开采而言,重要的是,横波分裂监测到了在油气藏层中裂隙的排列和流体流动的优选方向。对天然地震而言,其重要意义是小地震上方横波分裂监测到应力增加对遍布的低应力微裂隙分布的影响,以致于地震之前(地震可能是遥远的)的应力积累可以被识别并对即将发生的地震进行应力预测。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Stuart Crampin
高原
关键词裂隙引起的各向异性   流体饱和的微裂隙   横波分裂   应力预测地震   两类微裂隙     
Abstract: We identify two interrelated but independent species of microcracks with different origins and different distributions. One species is the classic high-stress microcracks identified in laboratory stress-cells associated with acoustic emissions as microcracks open with increasing stress. The other species is the low-stress distributions of closely-spaced stress-aligned fluid-saturated microcracks that observations of shear-wave splitting (SWS) demonstrate pervade almost all in situ rocks in the upper crust, the lower crust, and the uppermost 400 km of the mantle. On some occasions these two sets of microcracks may be interrelated and similar (hence ‘species’) but they typically have fundamentally-different properties, different distributions, and different implications. The importance for hydrocarbon exploration and recovery is that SWS in hydrocarbon reservoirs monitors crack alignments and preferred directions of fluid-flow. The importance for earthquake seismology is that SWS above small earthquakes monitors the effects of increasing stress on the pervasive low-stress microcrack distributions so that stress-accumulation before, possibly distant, earthquakes can be recognised and impending earthquakes stress-forecast.
Key wordsrack-induced anisotropy   fluid-saturate microcracks   shear-wave splitting   stress-forecasting earthquakes   two species of microcracks   
收稿日期: 2014-01-31;
基金资助:

本研究由中国国家自然科学基金(编号:41174042)资助。

引用本文:   
Stuart Crampin,高原. 两种类型微裂隙[J]. 应用地球物理, 2014, 11(1): 1-8.
Stuart Crampin,GAO Yuan. Two species of microcrack[J]. APPLIED GEOPHYSICS, 2014, 11(1): 1-8.
 
[1] Alford, R. M., 1986, Shear data in the presence of azimuthal anisotropy: Dilley Texas: 56th Ann. Internat. SEG Mtg., Expanded Abstracts, 476 - 379.
[2] Angerer, E., Crampin, S., Li, X.-Y., and Davis, T. L., 2002, Processing modelling and predicting time-lapse effects of overpressured fluid-injection in a fractured reservoir: Geophysical Journal International, 149, 267 - 280.
[3] Atkinson, B. K., and Rawlings, R. D., 1981, Acoustic emission during stress corrosion cracking in rocks: In Earthquake Prediction - an International Review: eds Simpson, D. W., and Richards P. G., AGU Maurice Ewing, Series, 4, 605 - 616.
[4] Bianco, F., Scarfi, L., Del Pezzo, E., and Patanè, D., 2006, Shear wave splitting changes associated with the 2001 volcanic eruption on Mt Etna: Geophysical Journal International, 167, 959 - 967.
[5] Crampin, S., 1993, A review of the effects of crack geometry on wave propagation through aligned cracks: Canadian Journal of Exploration Geophysics, 29, 3 - 17.
[6] Crampin, S., 1994, The fracture criticality of crustal rocks: Geophysical Journal International, 118, 428-438.
[7] Crampin, S., 1999, Calculable fluid-rock interactions: Journal of the Geological Society, 156, 501 - 514.
[8] Crampin, S., 2003a, Aligned cracks not LPO as the cause of mantle anisotropy. EGS-AGU-EUG Joint Ass Nice, Geophys Res Abst 5: 00205; with up-dated notes in online version.
[9] Crampin, S., 2003b, The New Geophysics: shear-wave splitting provides a window into the crack-critical rock mass: The Leading Edge, 22, 536 - 549.
[10] Crampin, S., 2004, The New Geophysics: implications for hydrocarbon recovery and possible contamination of time-lapse seismic: First Break, 22, 73 - 82.
[11] Crampin, S., 2006, The New Geophysics: a new understanding of fluid-rock deformation: In Eurock 2006: Multiphysics coupling and long term behaviour in rock mechanics, eds Van Cotthem, A., Charlier, R., Thimus, J.-F., and Tshibangu, J.-T,, Taylor and Francis, London, 539 - 544.
[12] Crampin, S., 2012, Misunderstandings in comments and replies about the ICEF Report: available only online as relevant journals will not consider Replies to Replies.
[13] Crampin, S., and Gao, Y., 2012, Plate-wide deformation before the Sumatra-Andaman Earthquake: Journal of Asian Earth Science, 62, 501 - 509.
[14] Crampin, S., and Gao, Y., 2013, The New Geophysics: Terra Nova, 25, 173 - 180.
[15] Crampin, S., and Peacock, S., 2005, A review of shear-wave splitting in the compliant crack-critical anisotropic Earth: Wave Motion, 41, 59 - 77.
[16] Crampin, S., and Peacock, S., 2008, A review of the current understanding of shear-wave splitting and common fallacies in interpretation: Wave Motion, 45, 675 - 722.
[17] Crampin, S., and Zatsepin S. V., 1997, Modelling the compliance of crustal rock: II - response to temporal changes before earthquakes: Geophysical Journal International, 129, 495 - 506.
[18] Crampin, S., Evans, R., and Atkinson, B. K., 1984, Earthquake prediction: a new physical basis: Geophysical Journal International, 76, 147 - 156.
[19] Crampin, S., Volti, T., and Stefánsson, R., 1999, A successfully stress-forecast earthquake: Geophysical Journal International, 138, F1 - F5.
[20] Crampin, S., Volti, T., Chastin, S., Gudmundsson, A., and Stefánsson, R., 2002, Indication of high pore-fluid pressures in a seismically-active fault zone: Geophysical Journal International, 151, F1 - F5.
[21] Crampin, S., Chastin, S., and Gao, Y., 2003, Shear-wave splitting in a critical crust: III - preliminary report of multi-variable measurements in active tectonics: Journal Applied Geophysics, Special Issue, 54, 265 - 277.
[22] Crampin, S., Peacock, S., Gao, Y., and Chastin, S., 2004a, The scatter of time-delays in shear-wave splitting above small earthquakes: Geophysical Journal International, 156, 39 - 44.
[23] Crampin, S., Volti, T., and Stefánsson, R., 2004b, Response to “A statistical evaluation of a ‘stress-forecast’ earthquake” by Seher, T., and Main, I. G.: Geophysical Journal International, 157, 194 - 199.
[24] Crampin, S., Gao, Y., and Peacock, S., 2008, Stress-forecasting (not predicting) earthquakes: A paradigm shift?: Geology, 36, 427 - 430.
[25] Crampin, S., Gao, Y., and De Santis, A., 2013, A few earthquake conundrums resolved: Journal of Asian Earth Science, 62, 501 - 509.
[26] Cruts, H. M. A., Groenenboom, J., Duijndam, A. J. W., and Fokkema, J. T., 1995, Experimental verification of stress-induced anisotropy. 65th Ann. Internat. SEG Mtg., Expanded Abstracts, 894 - 897.
[27] Davies, P., 1989, The New Physics: a synthesis: In The New Physics. ed Davies P, Camb Univ Press, 1 - 6.
[28] Gao, Y., and Crampin, S., 2003, Temporal variation of shear-wave splitting in field and laboratory in China: Journal of Applied Geophysics, Special Issue, 54, 279 - 287.
[29] Gao, Y., and Crampin, S., 2004, Observations of stress relaxation before earthquakes: Geophysical Journal International, 157, 578 - 582.
[30] Gao, Y., and Crampin, S., 2008, Shear-wave splitting and earthquake forecasting: Terra Nova, 20, 440 - 448.
[31] Gao, Y., Wang, P., Zheng, S., Wang, M., Chen, Y.-T., and Zhou, H., 1998, Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang Hainan Island Southern China: Geophysical Journal International, 135, 102 - 112.
[32] Gutenberg, B., and Richter, C. F., 1956, Frequency of earthquakes in California: Bulletin of the Seismological Society, America, 34, 185 - 188.
[33] Kaiser, J., 1950, An investigation into the occurrence of noises in tensile tests or a study of acoustic phenomena: PhD thesis, Technical University, Munich, Germany.
[34] Kranz, R. L,, 1983, Microcracks in rocks: a review: Tectonophysics, 100, 449 - 480.
[35] Lockner, D. A., 1993, The role of acoustic emission in the study of rock fracture: Journal of Rock Mechanics and Mining Science and Geomechanical Abstracts, 30, 883 - 899.
[36] Main, I. G., Sammonds, P. R., and Meredith, P. G., 1993, Application of a modified Griffith criterion to the evolution of fractal damage during compressional rock failure. Geophysical Journal International, 115, 367 - 380.
[37] Mueller, M. C., 1991, Prediction of lateral variability in fracture intensity using multicomponent shear-wave surface seismic as a precursor to horizontal drilling in the Austin chalk: Geophysical Journal International, 107, 409 - 415.
[38] Simmons, G., and Richter, D., 1976, Microcracks in rock: In The Physics and Chemistry of Minerals and Rocks, ed Strens, R. G. J., Wiley, New York, 105-137.
[39] Teanby, N. A., Kendall, J.-M., Jones, R. H., and van der Baan, M., 2004, Stress-induced temporal variations in seismic anisotropy observed in microseismic data: Geophysical Journal International, 156, 459 - 466.
[40] Volti, T., and Crampin, S., 2003a, A four-year study of shear-wave splitting in Iceland: 1 Background and preliminary analysis. In New insights into structural interpretation and modelling, ed Nieuwland, D. A., Geological Society, London, Special Publication, 212, 117 - 133
[41] Volti, T., and Crampin, S., 2003b, A four-year study of shear-wave splitting in Iceland: 2 Temporal changes before earthquakes and volcanic eruptions. In New insights into structural interpretation and modelling, ed Nieuwland, D. A., Geological Society, London, Special Publication, 212, 117 - 133
[42] Xue, L., Li, H.- B., Brodsky, E. E., et al., 2013, Continuous permeability measurements record healing inside the Wenchuan earthquake zone: Science, 340, 1555 - 1559.
[1] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[2] 韩开锋, 曾新吾. 各向异性介质中频率相关横波分裂参数的提取算法[J]. 应用地球物理, 2011, 8(2): 134-140.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司