APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (4): 477-487    DOI: 10.1007/s11770-013-0398-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
VTI介质转换波双参数时距方程分析与应用
李晓明1,2,陈双全1,2,李向阳1,2,3
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)CNPC 物探重点实验室,北京102249
3. Edinburgh Anisotropy Project, British Geophysical Survey, Edinburgh, U.K.
The analysis and application of simplified two-parameter moveout equation for C-waves in VTI anisotropy media
Li Xiao-Ming1,2, Chen Shuang-Quan1,2, and Li Xiang-Yang1,2,3
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Edinburgh Anisotropy Project, British Geophysical Survey, Edinburgh EH9 3LA, U.K.
 全文: PDF (1051 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在多波地震资料处理中,转换波由于传播路径非对称,以及各向异性的影响,其时距方程需要多参数进行描述。参数增加,使得转换波资料的处理与分析变得更加复杂。本文给出了VTI介质中双参数转换波时距方程,参数为转换波叠加速度VC2和纵波水平方向速度与转换波叠加速度平方比γvti。该方程在保证精度的前提下减少了参数个数。模型数据和实际数据应用分析验证了方程的适用范围和双参数估算的精度。而且,该方程与层状各向同性介质下双参数方程形式相同。该方程简化了转换波处理及参数估算过程,可用于实际转换波资料处理与解释。同时,采用双参数扫描方法,从转换波数据中可直接求取高精度的VC2和γvti,并且速度比模型可用于纵波、转换波资料匹配。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓明
陈双全
李向阳
关键词转换波   时距方程   双扫描   各向异性   动校正     
Abstract: Several parameters are needed to describe the converted-wave (C-wave) moveout in processing multi-component seismic data, because of asymmetric raypaths and anisotropy. As the number of parameters increases, the converted wave data processing and analysis becomes more complex. This paper develops a new moveout equation with two parameters for C-waves in vertical transverse isotropy (VTI) media. The two parameters are the C-wave stacking velocity (VC2) and the squared velocity ratio (γvti) between the horizontal P-wave velocity and C-wave stacking velocity. The new equation has fewer parameters, but retains the same applicability as previous ones. The applicability of the new equation and the accuracy of the parameter estimation are checked using model and real data. The form of the new equation is the same as that for layered isotropic media. The new equation can simplify the procedure for C-wave processing and parameter estimation in VTI media, and can be applied to real C-wave processing and interpretation. Accurate VC2 and γvti can be deduced from C-wave data alone using the double-scanning method, and the velocity ratio model is suitable for event matching between P- and C-wave data.
Key wordsConverted-wave   moveout equation   double-scanning   anisotropy   normal moveout correction   
收稿日期: 2012-10-03;
基金资助:

本研究由国家自然科学基金项目(编号:41074080)、国家科技重大专项(编号:2011ZX05019-008)、中国石油大学(北京)自然科学基金(编号:KYJJ2012-05-11)和中国石油科技创新基金(编号:2012D-5006-0301)资助。

引用本文:   
李晓明,陈双全,李向阳. VTI介质转换波双参数时距方程分析与应用[J]. 应用地球物理, 2013, 10(4): 477-487.
LI Xiao-Ming,CHEN Shuang-Quan,LI Xiang-Yang. The analysis and application of simplified two-parameter moveout equation for C-waves in VTI anisotropy media[J]. APPLIED GEOPHYSICS, 2013, 10(4): 477-487.
 
[1] Alkhalifah, T., and Tsvankin, I., 1995, Velocity analysis for transversely isotropic media: Geophysics, 60, 1550 - 1566.
[2] Cheret, T., Bale, R., and Leaney, S., 2000, Parameterization of polar anisotropic moveout for converted waves: 70th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1181 - 1184.
[3] Dai, H. C., and Li, X. Y., 2010, A revised two-parameter moveout equation of PS converted-waves in VTI media: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 248 - 252.
[4] Fowler P. J., 2003, Practical VTI approximations: a systematic anatomy. Journal of Applied Geophysics, 54(3), 347 - 367.
[5] Grechka, V., and Tsvankin, I., 2002. The joint non-hyperbolic moveout inversion of PP and PS data in VTI media: Geophysics, 64, 668 - 677.
[6] Hake, H., Helbig K., and Mesdag C. S., 1984, Three-term Taylor series for t2-x2 -curves of P- and S-waves over layered transversely isotropic ground: Geophysical Prospecting, 32(5), 828 - 850.
[7] Li, X. Y., 2003, Converted-wave moveout analysis revisited: The search for a standard approach: 73rd Ann. Internat. Mtg., Soc. Expl. Geophys., 805 - 808.
[8] Li, X. Y., and Yuan, J., 2001, Accuracy and sensitivity analysis for estimating anisotropic parameter from 4C seismic data, 71st Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 869 - 872.
[9] Li, X. Y., and Yuan, J., 2003, Converted-wave moveout and conversion-point equations in layered VTI media revisited: Theory and applications, Journal of Applied Geophysics, 54, 297 - 318.
[10] Li, X. Y., and Zhang, Y., 2011, Seismic reservoir characterization: how can multicomponent data help?: Journal of Geophysics and Engineering, 8, 123 - 141.
[11] Stovas, A., 2010, Generalized moveout approximation for qP- and qSV-waves in a homogeneous transversely isotropic medium: Geophysics, 75(6), 79 - 84.
[12] Stovas, A., and Ursin, B., 2004, New travel-time approximations for a transversely isotropic medium: Journal of Geophysics and Engineering, 1(2), 128 - 133.
[13] Tessmer, G., and Behle, A., 1988, Common reflection point data-stacking technique for converted waves: Geophysical Prospecting, 36(7), 671 - 688.
[14] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954 - 1966.
[15] Thomsen, L., 1999, Converted-wave reflection seismology over inhomogeneous anisotropic media: Geophysics, 64(3), 678 - 690.
[16] Tsvankin, I., and Thomsen, L., 1994, Nonhyperbolic reflection moveout in anisotropic media: Geophysics, 59(8), 1290 - 1304.
[17] Tsvankin, I., 2001, Seismic Signatures and Analysis of Reaction Data in Anisotropic Media: Elsevier.
[18] Yuan, J., 2002, Analysis of four-component seafloor seismic data for seismic anisotropy: Ph.D. thesis, The University of Edinburgh.
[19] Yuan, J., Li, X. Y., and Zhu, X., 2002, C-wave anisotropic parameter estimation from conversion point: 64th Annual Meeting, EAGE, Expanded Abstracts, 253 - 256.
[1] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[2] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[3] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[4] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[5] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[6] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[7] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[8] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[9] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[10] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[11] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[12] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[13] 宋汉杰,张金海,姚振兴. 基于Padé逼近的各向同性介质长偏移距动校正[J]. 应用地球物理, 2016, 13(4): 658-666.
[14] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. 强各向异性介质的微地震数据反演的陷阱[J]. 应用地球物理, 2016, 13(2): 326-332.
[15] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司