APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (4): 461-468    DOI: 10.1007/s11770-013-0396-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
频率域气枪阵列近场子波模拟远场子波研究
宋建国1,邓勇1,同昕鑫2
1. 中国石油大学(华东)地球科学与技术学院,青岛 266555
2. 中国石油长庆油田分公司,榆林 718500
The simulation of far-field wavelets using frequency-domain air-gun array near-field wavelets
Song Jian-Guo1, Deng Yong1, and Tong Xin-Xin2
1. School of Geoscience, China University of Petroleum (East China), Qingdao, 266555.
2. Changqing Oil Company, ChinaPetro, Yulin 718500, China.
 全文: PDF (753 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 海洋地震勘探中使用气枪阵列,入射到地下介质中的远场地震子波是所有单枪理想子波的叠加。由近场检波器记录的近场子波求取单枪理想子波,进而合成可靠的远场子波,是海上地震勘探子波处理的关键问题。针对这个问题,常用算法在时间域进行子波的分解与合成。由于单枪理想子波传播到检波器的时间不是采样间隔的整数倍,因而时间域方法涉及到地震信号的重采样,不仅计算复杂,而且存在插值误差。本文根据频率域相位与时间域时间延迟的关系,提出了利用傅里叶变换将实测的近场子波变换到频率域,在频率域实现子波谱的分解与合成,再变换回时间域的方法。该方法避开了重采样问题,可以得到精确的单枪理想子波和可靠的远场子波。这种方法还可以考虑虚反射的影响,同时实现子波分解与虚反射消除。模型测试与实际数据试处理表明了本文方法的正确性与可行性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋建国
邓勇
同昕鑫
关键词气枪阵列   频率域   近场子波   虚反射消除   远场子波     
Abstract: Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine-seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.
Key wordsAir-gun array   frequency domain   near-field wavelet   ghost removal   far-field wavelet   
收稿日期: 2012-08-28;
引用本文:   
宋建国,邓勇,同昕鑫. 频率域气枪阵列近场子波模拟远场子波研究[J]. 应用地球物理, 2013, 10(4): 461-468.
SONG Jian-Guo,DENG Yong,TONG Xin-Xin. The simulation of far-field wavelets using frequency-domain air-gun array near-field wavelets[J]. APPLIED GEOPHYSICS, 2013, 10(4): 461-468.
 
[1] Keller, J. B., and Kolodner, I., 1956, Damping of underwater explosion bubble oscillations: Appl. Phys., 27, 1156 - 1161.
[2] Giles, B. F., 1968, Pneumatic acoustic energy source: Geophysical Prospecting, 63(6), 2009 - 2024.
[3] Ziolkowski, A., 1970, A method for calculating the output pressure waveform from an air gun: Geophysics, 21, 137 - 161.
[4] Giles, B. F., and Johnston, R. C., 1973, System approach to air-gun array design: Geophysical Prospecting, 21, 77 - 101.
[5] Ziolkowski, A., Parkes, G., Hatton, L., and Haugland, T., 1982, The signature of an air gun array: Computation from near-field measurements including interactions: Geophysics, 47(10), 1413 - 1421.
[6] Vaage, S., and Ursin, B., 1987, Computation of signatures of linear air gun arrays: Geophysical Prospecting, 35, 281-287.
[7] Chen, H. L., Quan, H. Y., Liu, J., et al., 2005, Air gun array far field wavelet simulation based on the near-field measurements: Oil Geophysical Prospecting (in Chinese), 40(6), 703 - 707.
[8] Nooteboom, J. J., 1978, Signature amplitude of linear air gun arrays: Geophysical Prospecting, 26, 194 - 201.
[9] Parkes, G. E., Ziolkowski, A., Hatton, L., and Haugland, T., 1984, The signature of an air gun array: Computation from near-field measurements including interactions—Practical considerations: Geophysics, 48(2), 105 - 111.
[10] Hegna, S., and Parkes, G., 2011, The low frequency output of marine air-gun arrays: 81st Annual International Meeting, SEG Expanded Abstracts, 78 - 81.
[11] Niang, C., Ni, Y., and Svay, J., 2013, Monitoring of air-gun source signature directivity: 83rd Annual International Meeting, SEG Expanded Abstracts, doi:10.119/segam 20013-0940.1.
[1] 李皓,李国发,郭祥辉,孙夕平 ,王建富. 基于非稳态反演的气枪阵列子波方向性反褶积?[J]. 应用地球物理, 2019, 16(1): 124-132.
[2] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[3] 李文奔, 曾昭发, 李静, 陈雄, 王坤, 夏昭. 频率域航空电磁法2.5维正反演研究[J]. 应用地球物理, 2016, 13(1): 37-47.
[4] 宋建国, 宫云良, 李珊. 斜缆数据频率域高分辨率Radon变换与虚反射消除方法[J]. 应用地球物理, 2015, 12(4): 564-572.
[5] 李媛媛, 李振春, 张凯, 张旋. 基于双级并行的弹性波频率域全波形多尺度反演方法[J]. 应用地球物理, 2015, 12(4): 545-554.
[6] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
[7] 宋建勇, 郑晓东, 张研, 徐基祥, 秦臻, 宋雪娟. 基于静主元消元法的频率域波动方程正演[J]. 应用地球物理, 2011, 8(1): 60-68.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司