APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (4): 453-460    DOI: 10.1007/s11770-013-0394-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
Huber-Markov随机场自适应边缘保护贝叶斯地震资料叠前反演
田玉昆,周辉,陈汉明,邹雅铭,关守军
中国石油大学(北京)油气资源与探测国家重点实验室,CNPC物探重点实验室,北京 102249
Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme
Tian Yu-Kun1, Zhou Hui1, Chen Han-Ming1, Zou Ya-Ming1, and Guan Shou-Jun1
1. State Key Laboratory of Petroleum Resource and Prospecting, CNPC Key Lab of Geophysical Exploration, China University of Petroleum, Changping 102249,  China.
 全文: PDF (980 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 由于地震数据频带范围的有限性以及噪声、正演近似等因素的影响,地震反演是一个高度不适定的反问题。为了得到稳定唯一的解,通常在反演目标函数中加入光滑化约束,常用的是Tikhonov正则化约束。这种正则化对解是全局光滑的,在构造边缘位置会产生模糊。为了解决边缘模糊的问题,同时保证抗噪的作用,本文采用Huber-Markov 随机场约束边缘保护的方法求解叠前纵横波速度和密度三参数反演问题。对于待反演的参数,通过Markov邻域系统建立起纵向和横向上的约束。通过Huber边缘惩罚函数阈值的合理设置,达到在层内区域采用二次型函数抑制噪声得到平滑的结果;在边缘位置则采用线性函数,避免边缘的模糊化。通过无噪和有噪合成地震记录的反演,验证了方法的正确性,分析了正则项与反演效果的关系。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
田玉昆
周辉
陈汉明
邹雅铭
关守军
关键词Huber 边缘惩罚函数   Markov随机场   贝叶斯框架   叠前反演     
Abstract: Seismic inversion is a highly ill-posed problem, due to many factors such as the limited seismic frequency bandwidth and inappropriate forward modeling. To obtain a unique solution, some smoothing constraints, e.g., the Tikhonov regularization are usually applied. The Tikhonov method can maintain a global smooth solution, but cause a fuzzy structure edge. In this paper we use Huber-Markov random-field edge protection method in the procedure of inverting three parameters, P-velocity, S-velocity and density. The method can avoid blurring the structure edge and resist noise. For the parameter to be inverted, the Huber-Markov random-field constructs a neighborhood system, which further acts as the vertical and lateral constraints. We use a quadratic Huber edge penalty function within the layer to suppress noise and a linear one on the edges to avoid a fuzzy result. The effectiveness of our method is proved by inverting the synthetic data without and with noises. The relationship between the adopted constraints and the inversion results is analyzed as well.
Key wordsHuber edge punishment function   markov random-field   bayesian fram, Central South University   
收稿日期: 2013-03-20;
基金资助:

本项研究由973计划(2013CB228603)、国家科技重大专项(2011ZX05024和2011ZX05010)和国家自然科学基金(41174119)资助。

引用本文:   
田玉昆,周辉,陈汉明等. Huber-Markov随机场自适应边缘保护贝叶斯地震资料叠前反演[J]. 应用地球物理, 2013, 10(4): 453-460.
TIAN Yu-Kun,ZHOU Hui,CHEN Han-Ming et al. Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme[J]. APPLIED GEOPHYSICS, 2013, 10(4): 453-460.
 
[1] Aki, K., and Richards, P. G., 2002, Quantitative Seismology: Univ. Science Books.
[2] Bertete-Aguirre, H., Cherkaev, E., and Oristaglio, M., 2002, Nonsmooth gravity problem with total variation penalization functional: Geophysical Journal International, 149(2), 499 - 507.
[3] Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems: Journal of the Royal Statistical Society, 36(2), 192 - 236.
[4] Bouman, C., and Sauer, K., 1993, A generalized Gaussian image model for edge-preserving MAP estimation: IEEE Trans. Image Processing, 2(7), 296 - 310.
[5] Buland, A., and Omre, H., 2003, Bayesian linearized AVO inversion: Geophysics, 68(1), 185 - 198.
[6] Farquharson, C., and Oldenburg, D., 1998, Nonlinear inversion using general measures of data misfit and model structure: Geophysical Journal International, 134(1), 213 - 227.
[7] Geman, D., and Reynolds, G., 1992, Constrained restoration and the recovery of discontinuities: IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3), 367 - 383.
[8] Huber, P. J., 2011, Robust statistics. Springer Berlin Heidelberg.
[9] Li, X. C., and Zhu, S. A., 2007, A Survey of the Markov random field method for image segmentation: Journal of Image and Graphics, 12(5), 789 - 798.
[10] Partha, R., Mrinal, S., and Dan, W., 2008, Inversion using Bayesian hyper-prior formulation for sharp boundaries: 76th Annual International Meeting, SEG, Expanded Abstracts, 1238 - 1242.
[11] Portniaguine, O., and Zhadanov, M., 1999, Focusing geophysical inversion images: Geophysics, 64(3), 874 - 887.
[12] Schultz, R. R., and Stevenson, R. L., 1994, A Bayesian approach to image expansion for improved definition: IEEE Trans. Image Processing, 3(3), 233 - 242.
[13] Theune, U., Jensås, I. Ø., and Eidsvik, J., 2010, Analysis of prior models for a blocky inversion of seismic AVA data: Geophysics, 75(3), C25 - C35.
[14] Tian, Y. K., Zhou, H., and Yuan, S. Y., 2013, Lithologic discrimination method based on Markov random-field: Chinese J. Geophys., 56(4), 1360 - 1368.
[15] Walker, C., and Ulrych, T. J., 1983, Autoregressive recovery of the acoustic impedance: Geophysics, 48(10), 1338 - 1350.
[16] Xu, Z., and Lam, E. Y., 2009, Maximum a posteriori blind image deconvolutionwith Huber-Markov random-field regularization: Optics Letters, 34(9), 1453 - 1455.
[17] Yang, P. J., and Yin, X. Y., 2008, Non-linear quadratic programming Bayesian prestack inversion: Chinese J. Geophys., 51(6), 1876 - 1882.
[18] Yuan, S. Y., and Wang, S. X., 2013, Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints: Journal of Geophysics and Engineering, 10(2), 1 - 10.
[19] Yuan, S. Y., and Wang, S. X., 2013, Spectral sparse Bayesian learning reflectivity inversion: Geophysical Prospecting, 61(4), 735 - 746.
[20] Yuan, S. Y., Wang, S. X., and Li, G. F., 2012, Random noise reduction using Bayesian inversion: Journal of Geophysics and Engineering, 9(1), 60 - 68.
[21] Zhang, H. B., Shang Z. P., and Yang, C. C., 2005, Estimation of regular parameters for the impedance inversion: Chinese J. Geophys., 48(1), 181 - 188.
[22] Zhang, H. B., and Yang, C. C., 2003, A constrained impedance inversion method controlled by regularized parameters: Chinese J. Geophys., 46(6), 827 - 834.
[23] Zhang, S. M., 2011, Research of post-stack impedance inversion and AVA Three-term Simultaneous Inversion based on edge preserving blocky constrain: Ph.D. Thesis, Central South University.
[1] 王康宁, 孙赞东, 董宁. 基于各向异性MRF-MAP的叠前反演及在页岩气甜点识别中的应用[J]. 应用地球物理, 2015, 12(4): 533-544.
[2] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[3] 黄捍东, 王彦超, 郭飞, 张生, 纪永祯, 刘承汉. 基于Zoeppritz方程的叠前地震反演方法研究及其在流体识别中的应用[J]. 应用地球物理, 2015, 12(2): 199-211.
[4] 刘财, 李博南, 赵旭, 刘洋, 鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别[J]. 应用地球物理, 2014, 11(4): 384-394.
[5] 骆春妹, 王尚旭, 袁三一. 子波相位不准对叠前波形反演的影响[J]. 应用地球物理, 2014, 11(4): 479-488.
[6] 陈双全, 王尚旭, 张永刚, 季敏. 应用叠前反演弹性参数进行储层预测[J]. 应用地球物理, 2009, 6(4): 375-384.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司