APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (3): 251-264    DOI: 10.1007/s11770-013-0384-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
多震源混合地震数据分离方法
王汉闯1,陈生昌1,张博1,佘德平2
1. 浙江大学 地球科学系,杭州 310027
2. 中国石油化工股份有限公司石油物探技术研究院,南京 210014
Separation method for multi-source blended seismic data
Wang Han-Chuang1, Chen Sheng-Chang1, Zhang Bo1, and She De-Ping2
1. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
2. Sinopec Geophysical Research Institute, Nanjing 210014, China.
 全文: PDF (1966 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 多震源地震技术是一种高效的地震数据采集方法技术,但它得到的地震记录是多震源波场叠加的混合地震数据,因此需要对其进行分离以得到各个震源所对应的地震波场数据。在数学上,多震源波场的分离表现为一个线性反演问题,根据多震源地震数据采集中的激发次数和震源个数之间的关系,它可分为比较容易求解的适定或超定线性反演问题和难以求解的欠定线性反演问题。对于欠定型的多震源波场分离问题,本文提出了利用波场的最稀疏性约束的最优化求解方法,即把待分离波场的最稀疏性作为正则化约束,建立反演的目标函数,然后应用迭代阈值法进行求解。对于最极端欠定型的一次激发的多震源波场分离问题,本文提出了伪分离加随机噪音滤波方法,即首先对波场分离的线性反演问题进行伪求解,得到近似共炮道集,然后再把得到近似共炮道集分选成共检波点道集,使来自其他震源的波场表现为随机噪音,最后利用滤波方法去噪。把本文提出的多震源波场分离方法应用于数值模拟的多震源混合地震数据,在无噪音、含随机噪音以及含线性规则噪音的混合地震记录的分离试验中都得到了理想的结果,特别是对于一次激发情况的分离问题压噪效果尤为显著,表明本文方法适用于含噪多震源混合数据的分离问题,从而证明了本文方法的正确性与有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王汉闯
陈生昌
张博
佘德平
关键词多震源   数据分离   线性反问题   最稀疏约束   伪分离   滤波     
Abstract: Multi-source seismic technology is an efficient seismic acquisition method that requires a group of blended seismic data to be separated into single-source seismic data for subsequent processing. The separation of blended seismic data is a linear inverse problem. According to the relationship between the shooting number and the simultaneous source number of the acquisition system, this separation of blended seismic data is divided into an easily determined or overdetermined linear inverse problem and an underdetermined linear inverse problem that is difficult to solve. For the latter, this paper presents an optimization method that imposes the sparsity constraint on wavefields to construct the object function of inversion, and the problem is solved by using the iterative thresholding method. For the most extremely underdetermined separation problem with single-shooting and multiple sources, this paper presents a method of pseudo-deblending with random noise filtering. In this method, approximate common shot gathers are received through the pseudo-deblending process, and the random noises that appear when the approximate common shot gathers are sorted into common receiver gathers are eliminated through filtering methods. The separation methods proposed in this paper are applied to three types of numerical simulation data, including pure data without noise, data with random noise, and data with linear regular noise to obtain satisfactory results. The noise suppression effects of these methods are sufficient, particularly with single-shooting blended seismic data, which verifies the effectiveness of the proposed methods.
Key wordsMulti-source   data separation   linear inverse problem   sparsest constraint   pseudo-deblending   filtering   
收稿日期: 2012-11-11;
基金资助:

本研究由国家自然科学基金项目(编号:41074133)资助。

作者简介: 王汉闯,于2009年毕业于中国地质大学(武汉),并获得学士学位,现在浙江大学地球科学系攻读博士学位,主要研究方向为地震成像与反演。
引用本文:   
王汉闯,陈生昌,张博等. 多震源混合地震数据分离方法[J]. 应用地球物理, 2013, 10(3): 251-264.
WANG Han-Chuang,CHEN Sheng-Chang,ZHANG Bo et al. Separation method for multi-source blended seismic data[J]. APPLIED GEOPHYSICS, 2013, 10(3): 251-264.
 
[1] Aaron, P., Borselen, B. R., and Fromyr, E., 2008, Simultaneous Sources: A Controlled Experiment on Different Source Configurations: 79th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 56 - 60.
[2] Akerberg, P., Hampson, G., Rickett, J., et al., 2008, Simultaneous source separation by sparse radon transform: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2801 - 2805.
[3] Bagaini, C., 2006, Overview of simultaneous vibroseis acquisition methods: 76th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 70 - 74.
[4] Beasley, C. J., 2008, A new look at marine simultaneous sources: The Leading Edge, 7(7), 914 - 917.
[5] Beasley, C. J., Chambers, R. E., and Jiang, Z., 1998, A new look at simultaneous sources: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 133 - 135.
[6] Berkhout, A. J., Blacquière, G., and Verschuur, E., 2008, From simultaneous shooting to blended acquisition: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2831 - 2838.
[7] Berkhout, A. J., Blacquière, G., and Verschuur, E., 2009, The concept of double blending Combining incoherent shooting with incoherent sensing: 79th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 59-62.
[8] Blacquière, G., Berkhout, A. J., and Verschuur, E., 2009, Survey Design for Blended Acquisition: 79th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 56 - 60.
[9] Candès, E. J., and Donoho, D. L., 2003, New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities: Commun. Pur. Appl. Math., 57(2), 219 - 266.
[10] Cardoso, J. F., 1998, Blind signal separation: statistical principles: Proceedings of the IEEE, 86(10), 2009 - 2025.
[11] Daubechies, I., Fornasier, M., and Loris, I., 2008, Accelerated projected gradient method for linear inverse problems with sparsity constraints: J. Fourier Anal. Appl., 14(5 - 6), 764 - 792.
[12] Demanet, L., and Ying, L., 2007, Curvelets and wave atoms for mirror-extended images: Wavelets XII.
[13] Gandini, M., Lombardi, F., and Vaccarino, F., 2011, Blind separation of manufacturing variability with independent component analysis: A convolutive approach: Expert Syst. Appl., 38(8), 9939 - 9946.
[14] Golub, G. H., and Reinsch, C., 1970, Singular value decomposition and least squares solutions: Numer. Math., 14(5), 403 - 420.
[15] Hampson, G., Stefani, J., Herkenhoff, F., et al., 2008, Acquisition using simultaneous sources: The Leading Edge, 27(7), 918 - 923.
[16] Huo, S., Luo, Y., and Kelamis, P. G., 2012, Simultaneous sources separation via multi-directional vector-median filter: Geophysics, 77(4), 123 - 131.
[17] Ikelle, L., 2007, Coding and decoding, seismic data modeling, acquisition and processing: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 66 - 70.
[18] Landweber, L., 1951, An iteration formula for Fredholm integral equations of the first kind: Am. J. Math., 73(3), 615 - 624.
[19] Lynn, W., Doyle, M., Larner, K., et al., 1987, Experimental investigation of interference from other seismic crews: Geophysics, 52(11), 1501 - 1524.
[20] Lee, T. W., Lewicki, M. S., Girolami, M., et al., 1999, Blind source separation of more sources than mixtures using overcomplete representations: Signal Processing Letters, IEEE, 6(4), 87 - 90.
[21] Mahdad, A., Doulgeris, P., and Blacquiere, G., 2010, Separation of blended data by iterative estimation and subtraction of blending interference noises: Geophysics, 76(3), 9 - 17.
[22] Moerig, R., Barr, F. J., Nyland, D. L., et al., 2002, Simultaneous shooting using cascaded sweeps: 72nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 74 - 76.
[23] Moore, I., Dragoset, B., Ommundsen, T., et al., 2008, Simultaneous source separation using dithered sources: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2806 - 2810.
[24] Paige, C. C., and Saunders, M. A., 1981, Towards a generalized singular value decomposition: Siam J. Numer. Anal., 18(3), 398 - 405.
[25] Spitz, S., Pica, A., and Hampson, G., 2008, Simultaneous source separation: a prediction-subtraction approach: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2811 - 2815.
[26] Yao, Y., 2002, Geophysical Inversion Basic Theory and Application Method, China University of Geosciences Press, Wuhan, 40 - 50.
[1] 闫建平,何旭,胡钦红,梁强,唐洪明,冯春珍,耿斌. 湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例[J]. 应用地球物理, 2018, 15(2): 151-164.
[2] 曹中林,曹俊兴,巫芙蓉,何光明,周强,吴育林. 基于分数阶傅里叶变换的混合Cadzow滤波法[J]. 应用地球物理, 2018, 15(2): 271-279.
[3] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[4] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[5] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[6] 张代磊,黄大年,于平,袁园. 基于平移不变量小波的全张量重力梯度数据滤波[J]. 应用地球物理, 2017, 14(4): 606-619.
[7] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[8] 王德营,凌云. 基于相移和相位滤波的面波压制方法[J]. 应用地球物理, 2016, 13(4): 614-620.
[9] 范景文,李振春,张凯,张敏,刘学通. 基于构造导向滤波的多震源最小二乘逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 491-499.
[10] Seyyed Ali Fa’al Rastegar, Abdolrahim Javaherian, Naser Keshavarz Farajkhah. 利用改进的共偏移距-共反射面(COCRS)叠加压制地滚波?[J]. 应用地球物理, 2016, 13(2): 353-363.
[11] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[12] 蔡涵鹏, 贺振华, 李亚林, 何光明, 邹文, 张洞君, 刘璞. 边界和振幅特性保持的自适应噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 289-300.
[13] 张固澜, 王熙明, 贺振华, 曹俊兴, 李可恩, 容娇君. 零偏移距VSP资料层Q反演及其应用研究[J]. 应用地球物理, 2014, 11(2): 235-244.
[14] 许辉群, 桂志先. 信噪比数据体在标准层分析及断裂检测中的应用探讨[J]. 应用地球物理, 2014, 11(1): 73-79.
[15] 袁园, 黄大年, 余青露, 耿美霞. 全张量重力梯度数据滤波处理[J]. 应用地球物理, 2013, 10(3): 241-250.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司