APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (3): 241-250    DOI: 10.1007/s11770-013-0391-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
全张量重力梯度数据滤波处理
袁园1,黄大年1,余青露2,耿美霞1
1. 吉林大学 地球探测科学与技术学院,长春 130026
2. 中国石化石油物探技术研究院,南京 211103
Noise filtering of full-gravity gradient tensor data
Yuan Yuan1, Huang Da-Nian1, Yu Qing-Lu2, and Geng Mei-Xia1
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, China.
2. Sinopec Geophysical Research Institute, Nanjing, 211103, China.
 全文: PDF (1470 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 石油和金属矿勘探中,相对于重力数据,重力梯度张量数据含有高频的信号成分,能更好的描述小的异常特征。然而,全张量重力梯度仪测量值中含有高频随机噪声。从高频信号成分中分离出噪声将是处理重力梯度张量数据的一个挑战。本文在拉普拉斯方程约束条件下推导了重力梯度张量的笛卡尔方程和位场的表达式,然后应用笛卡尔方程通过最优线性反演方法拟合测量的重力梯度张量值,从而去除测量值中的噪声。通过模型实验,证明了这种方法不仅能很好的去除高频的随机噪声,而且能增强被噪声淹没的弱异常信号。与传统的低通滤波方法相比,避免了通过牺牲分辨率来达到去除噪声的缺点。最后将该方法应用到Bell Geospace在Vinton Dome测得的Air-FTG梯度张量数据中,并取得了很好的效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁园
黄大年
余青露
耿美霞
关键词重力梯度张量   拉普拉斯方程   最优线性反演   低通滤波   高频信号     
Abstract: In oil and mineral exploration, gravity gradient tensor data include higher-frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high-frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas–Louisiana border.
Key words:   
收稿日期: 2013-05-03;
基金资助:

本研究由深部探测技术与实验研究专项项目SinoProbe-09-01(编号:201011078)资助。

作者简介: 袁园,2010年毕业于吉林大学,获得应用地球物理专业的学士学位。现于该学院攻读固体地球物理学博士学位。主要从事航空重力梯度数据处理方面的研究。
引用本文:   
袁园,黄大年,余青露等. 全张量重力梯度数据滤波处理[J]. 应用地球物理, 2013, 10(3): 241-250.
YUAN Yuan,HUANG Da-Nian,YU Qing-Lu et al. Noise filtering of full-gravity gradient tensor data[J]. APPLIED GEOPHYSICS, 2013, 10(3): 241-250.
 
[1] Barnes, G. and Lumley, J., 2011, Processing gravity gradient data: Geophysics, 76(2), I33 - I47.
[2] Barnes, G., Lumley, J., Houghton, P. I., and Gleave, R. J., 2011, Comparing gravity and gravity gradient surveys: Geophysical Prospecting, 59, 176 - 187.
[3] Barnes, G., Barraud, J., Lumley, J., and Davies, M., 2008, Advantages of multi-tensor high resolution gravity gradient data: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 3587 - 3590.
[4] Beiki, M., 2010, Analytic signals of gravity gradient tensor and their application to estimate source location: Geophysics, 75(6), 159 - 174.
[5] Blakely, R. J., 1995, Potential theory in gravity and magnetic applications: Cambridge University Press, Cambridge.
[6] Brzezowski, S. J., and Heller, W. G., 1988, Gravity gradiometer survey errors: Geophysics, 53, 1355 - 1361.
[7] Hansen, P. C., and Leary, D. P. O., 1993, The use of the L-curve in the regularization of discrete ill-posed problems: SIAM Journal on Scientific Computing, 14, 1487 - 1503.
[8] Jorgensen, G. J., Kisabeth, J. L., and Routh, P. S., 2001, The role of potential field data and joint inverse modeling in the exploration of the deepwater Gulf of Mexico mini-basin province: Petroleum Frontiers, 17, 18 - 35.
[9] Li, Y., 2001, Processing gravity gradiometer data using an equivalent source technique. 71st Annual International Meeting, SEG, Expanded Abstracts, 1466 - 1469.
[10] Lyrio, J. C., Tenorio, L., and Li, Y., 2004, Efficient automatic denoising of gravity gradiometry data: Geophysics, 69, 772 - 782.
[11] Ma, G. Q., Du, X. J., and Li, L. L., 2012, Comparison of the tensor local wavenumber method with the conventional local wavenumber method for interpretation of total tensor data of potential fields: Chinese Journal of Geophysics, 55(7), 2450 - 2461.
[12] Menke, W., 1984, Geophysical data analysis discrete inverse theory: Academic Press.
[13] Mikhailov, V., Pajot, G., Diament, M., and Price, A., 2007, Tensor deconvolution: A method to locate equivalent sources from full tensor gravity data: Geophysics, 72(5), I61 - I69.
[14] Mims, J., Selman, D., Dickinson, J., Murphy, C., and Mataragio, J., 2009, Comparison study between airborne and ship-borne full tensor gravity gradiometry (FTG) data: SEG Technical Program Expanded Abstracts, 28, 942 - 946.
[15] Mumaw, G., 2004, Marine 3D full tensor gravity gradiometry-The first five years: Hydro International, 8, 38 - 41.
[16] Murphy, C. A., 2006, Evaluating Air-FTG survey data: bringing value to the full picture: 18th ASEG Preview, 24 - 25.
[17] Murphy, C. A., and Brewster, J., 2007, Target delineation using full tensor gravity gradiometry data: ASEG, Extended Abstracts.
[18] Murphy, C. A., 2010, Recent developments with Air-FTG: Abstracts from the ASEG-PESA Airborne Gravity 2010 Workshop, 142 - 151.
[19] Oldenburg, D. W., and Li, Y., 1994, Subspace linear inverse method: Inverse Problems, 915 - 935
[20] Pajot, G., Viron, O., Diament, M., Lequentrec-Lalancette, M. F., and Mikhailov, V., 2008, Noise reduction through joint processing of gravity and gravity gradient data: Geophysics, 73(3), I23 - I33.
[21] Pilkington, M., 2012, Analysis of gravity gradiometer inverse problems using optimal design measures: Geophysics, 77(2), G25 - G31.
[22] Rao, B. S. R., and Murthy, I. V. R., 1978, Gravity and magnetic methods?of?prospecting, Amold - Heinemann.
[23] Sneeuw, N., 2006, Physical Geodesy: Lecture notes, University of Stuttgart.
[24] While, J., Jackson, A., Smit, D., and Biegert, E., 2006, Spectral analysis of gravity gradiometry profiles: Geophysics, 71, 11 - 22.
[25] Zhang, C., Mushayandebvu, M. F., Reid, A. B., Fairhead, J. D., and Odegard, M. E., 2000, Euler deconvolution of gravity tensor gradient data: Geophysics, 65(2), 512 - 520.
[1] 蒋甫玉, 黄岩, 燕轲. 由重力异常计算重力全梯度张量的余弦变换法[J]. 应用地球物理, 2012, 9(3): 247-260.
[2] 蒋甫玉, 高丽坤. 基于改进的小子域滤波的重力异常及重力梯度张量边缘增强[J]. 应用地球物理, 2012, 9(2): 119-130.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司