APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (2): 101-109    DOI: 10.1007/s11770-011-0283-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
地层渗透率与水合物含量关系的模拟研究
赵倩,邓克俊,刘学伟
中国地质大学(北京)
A simulation study of formation permeability as a function of methane hydrate concentration*
Zhao Qian1, Dunn Keh-Jim1, Liu Xue-Wei1
China University of Geosciences, Beijing 100083, China.
 全文: PDF (994 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文通过人工变换T2分布和建立管-球模型模拟法研究含水合物地层渗透率与水合物含量之间的关系。首先,在渗透率的模拟试验中,我们改变了束缚水与可动水的比例、总孔隙度以及与之关联的T2分布。试验结果表明,相对渗透率与水合物含量之间的关系受到这些因素的制约。随后,我们用管-球模型表示水合物生长的孔隙空间,并把水合物的生长过程看成是向孔隙空间随机扔小球的过程。在此过程中,采用两种方法计算渗透率,一是Schlumberger’s T2公式(即SDR模型),二是Darcy定律与Poiseuille流动方程相结合的方法。前人的实验研究表明,在一定的水合物含量范围内,渗透率基本保持不变。以此为参考,我们将计算结果与之进行比较。我们发现,采用SDR模型时,渗透率的数值模拟曲线与Masuda模型N=15时的结果相近。而采用Darcy定律时,渗透率模拟值较高,但与实验结果的趋势相一致,都会出现渗透率的平直阶段。尤其,当水合物晶体在孔隙体内优先生成时,优先的概率越高,渗透率的平直范围越大。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵倩
邓克俊
刘学伟
关键词含水合物地层   渗透率   NMR T2分布     
Abstract: We modeled and studied the permeability of methane hydrate bearing formations as a function of methane hydrate concentration by artificially varying the T2 distribution as well as using a tube-sphere model. We varied the proportion of irreducible and movable water as well as the total porosity associated with the T2 distribution and found the normalized permeability as a function of methane hydrate concentration is dependent of these variations. Using a tube-sphere model, we increased the methane hydrate concentration by randomly placing methane hydrate crystals in the pore spaces and computed the permeability using either the Schlumberger T2 relaxation time formula or a direct calculation based on Darcy’s law assuming Poiseuille flow.  Earlier experimental measurements reported in the literature show there is a methane hydrate concentration range where the permeability remains relatively constant. We found that when the Schlumberger T2 relaxation time formula is used the simulation results show a curve of normalized permeability versus methane hydrate concentration quite close to that predicted by the Masuda model with N = 15. When the permeability was directly calculated based on Darcy’s law, the simulation results show a much higher normalized permeability and only show a trend consistent with the experimental results, i.e., with a permeability plateau, when the methane hydrate crystals are preferentially placed in the tubes, and the higher the preferential probability, the larger the range where the permeability has a plateau.
Key wordsMethane hydrate bearing formation   permeability   NMR T2 distribution   
基金资助:

国家重点基础研究发展计划(973计划)(编号:2009CB219505)资助。

引用本文:   
赵倩,邓克俊,刘学伟. 地层渗透率与水合物含量关系的模拟研究[J]. 应用地球物理, 2011, 8(2): 101-109.
ZHAO Qian,DENG Ke-Jun,LIU Xue-Wei. A simulation study of formation permeability as a function of methane hydrate concentration*[J]. APPLIED GEOPHYSICS, 2011, 8(2): 101-109.
 
[1] Brewer, P. G., Orr, F. M. Jr., Friederich, G., Kvenvolden, D.L. McFarlane, Q. J., and Kirkwood, W., 1997, Deep ocean field tests of methane hydrate formation from a remotely operated vehicle: Geology, 25, 407 - 410.
[2] Clennell, M. B., Hovland, M., Booth, J. S., Henry, P., and Winters, W. J., 1999, Formation of natural gas hydrates in marine sediments, 1. Conceptual model of gas hydrate growth conditioned by host sediment properties: J. Geophys. Res., 104(B10), 22985 - 23003.
[3] Handa, Y. P., and Stupin, D., 1992, Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica-gel pores: J. Phys. Chem., 96, 8599 - 8603.
[4] Helgerud, M. B., 2001, Wave speeds in gas hydrate and sediments containing gas hydrate: A laboratory and modeling study: Thesis, Stanford Univ., Stanford, Calif.
[5] Henry, P., Thomas, M., and Clennell, M. B., 1999, Formation of natural gas hydrates in marine sediments, 2. Thermodynamic calculations of stability conditions in porous sediments: J. Geophys. Res., 104(B10), 23005 - 23022.
[6] Kenyon, W. E., 1992, Nuclear magnetic resonance as a petrophysical measurement: Nucl. Geophys., 6, 153 - 171.
[7] Kleinberg, R. L., Flaum, C., Griffin, D. D., Brewer, P.G. Malby, G. E. Peltzer, E. T., and Yesinowski, J. P., 2003a, Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation and submarine slope stability: J. Geophys. Res., 108(B10), 2508 - 2524.
[8] Kleinberg, R. L., Flaum, C., Straley, Brewer, P. G., Malby, G. E., Peltzer, E. T., Friederich, G., and Yesinowski, J. P., 2003b, Seafloor nuclear magnetic resonance assay of methane hydrate in sediment and rock: J. Geophys. Res., 108(B10), 2137 - 2149.
[9] Masuda, Y., Naganawa, S., Ando, S., and Sato, K., 1997, Numerical calculation of gas production performance from reservoirs containing natural gas hydrates: Paper 38291 presented at the Annual Technical Conference, Soc. of Petrol. Eng., San Antonio, Tex.
[10] Melnikov, V., and Nesterov, A., 1996, Modeling of gas hydrates formation in porous media: Second International Conference on Natural gas hydrates, United Engineering Foundation, Toulouse, France.
[11] Minagawa, H., Nishikawa, Y., Ikeda, I., Miyazaki, K., Takahara, N., Sakamoto, Y., Komai, T., and Narita, H., 2008, Relation between permeability and pore size distribution of methane hydrate bearing sediments: Offshore Technology Conference, Houston, Texas, USA, Paper 19305.
[12] Nimblett, J., and Ruppel, C., 2003, Permeability evolution during the formation of gas hydrates in marine sediments: J. Geophys. Res., 108(B9), 2420 - 2416.
[13] Straley, C., Rossini, D., Vinegar, H., Tutunjian, P., and Morriss, C., 1994, Core analysis by low field NMR: Paper SCA - 9094 presented at the 1994 International Symposium, Soc. of Core Anal., Stavanger, Norway.
[14] Tohidi, B., Anderson, R., Clennell, M. B., Burgass, R.W., and Biderkab, A.B., 2001, Visual observation of gas hydrate formation and dissociation in synthetic porous media by means of glass micromodels: Geology, 29, 867 - 870.
[1] 彭蓉,魏建新,狄帮让,丁拼搏,刘子淳. 砂岩样品的震电效应实验研究[J]. 应用地球物理, 2016, 13(3): 425-436.
[2] 周峰, 胡祥云, 孟庆鑫, 胡旭东, 刘志远. 利用泥浆侵入效应评估储层渗透率的模型和方法[J]. 应用地球物理, 2015, 12(4): 482-492.
[3] 李传辉, 赵倩, 徐红军, 冯凯, 刘学伟. 基于核磁共振测量的南海神狐海域天然气水合物对地层渗透率的影响研究[J]. 应用地球物理, 2014, 11(2): 207-214.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司