APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (1): 50-58    DOI: 10.1007/s11770-009-0004-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于单程波方程的角度域保幅偏移
叶月明1,李振春1,徐秀刚1,朱绪峰2,仝兆岐1
1. 中国石油大学(华东)地球资源与信息学院,山东东营 2570l61
2. 中国石油东方地球物理公司,河北涿州 072751
Preserved amplitude migration based on the one way wave equation in the angle domain
Ye Yue-Ming1, Li Zhen-Chun1, Xu Xiu-Gang1, Zhu Xu-Feng2, and Tong Zhao-Qi1
1. College of Earth Resources and Information, China University of Petroleum (East China), Dongying 257061, China.
2. Bureau of Geophysical Prospecting,  Zhuozhou 072751, China.
 全文: PDF (763 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统叠前深度偏移只能够提供地下的构造信息,但工业界在需要构造信息的同时还要与地下界面反射系数成比例的振幅信息。最近几年,基于单程波方程的保幅叠前深度偏移算法有了一定的发展,但是,基于炮域、单程波的保幅型叠前深度偏移必须应用反褶积型的成像条件,这种成像条件在构造复杂、速度变化剧烈的地区会出现不稳定现象。基于角度域的保幅深度偏移克服了这一不稳定性缺点的同时,还能够对实际资料的角度域共成像点道集速度分析。本文在保幅单程波延拓算子的基础上,实现了基于角度域的保幅深度偏移,模型和实际资料的试算分析验证该思路方法的正确性和有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶月明
李振春
徐秀刚
朱绪峰
仝兆岐
关键词保幅偏移   叠前深度偏移   角度域   单程波方程   成像条件     
Abstract: Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one-way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method.
Key wordsPreserved amplitude   prestack depth migration   angle domain   one way wave equation   imaging conditions   
收稿日期: 2008-10-11;
基金资助:

本研究由国家863专题(2006AA06Z206);国家973计划(2007CB209605);CNPC物探重点实验室中国石油大学(华东)研究室和中国石油大学(华东)博士研究生创新资金资助项目资助。

引用本文:   
叶月明,李振春,徐秀刚等. 基于单程波方程的角度域保幅偏移[J]. 应用地球物理, 2009, 6(1): 50-58.
YE Yue-Ming,LI Zhen-Chun,XU Xiu-Gang et al. Preserved amplitude migration based on the one way wave equation in the angle domain[J]. APPLIED GEOPHYSICS, 2009, 6(1): 50-58.
 
[1] Biondi, B., and Symes, W, 2004, Angle-domain common-image gathers for migration velocity analysis by wavefied-continuation imaging: Geophysics, 69(5), 1283 - 1298.
[2] Chen, J. B., Wang, H. Z., and Ma, Z. T., 2001, Finite-difference pre-stack depth migration with error compensation: Oil Geophysical Prospecting (in Chinese), 36(4), 408 - 413.
[3] Cui, X. F., Zhang, G. Q., and Wu, Y. L., 2004, True amplitude seismic migration operator in 3D heterogeneous medium: Chinese Journal of Geophysics (in Chinese), 47(3), 509 - 513.
[4] Liu, D. Q., Cui, X. F., and Zhang, G. Q., 2004, True-amplitude migration of wave-equation hybrid method: Oil Geophysical Prospecting (in Chinese), 39(3), 283 - 286.
[5] Liu, D. J., and Yin, X. Y., 2007, A method of Fourier finite-difference preserved-amplitude pre-stack depth migration: Chinese Journal of Geophysics (in Chinese), 50(1), 268 - 276.
[6] Rickett, J. E., and Sava, P. C., 2002, Offset and angle-domain common image-point gathers for shot-profile migration: Geophysics, 67(3), 883 - 889.
[7] Sava, P.C, and Fomel, S., 2003, Angle-domain common-image gathers by wavefield continuation methods: Geophysics, 68(3), 1065 - 1074
[8] Sun, J. G., 2002, Kirchhoff-type true-amplitude migration and demigration: Progress in Exploration Geophysics (in Chinese), 25(6), 1 - 5.
[9] Wang, D., Zheng, X. D., Zhang, Q. B., Wang, H. Z., and Ma, Z. T., 2008, Amplitude-preserving plane-wave prestack time migration for AVO analysis: Applied Geophysics, 5(3), 212 - 218.
[10] Xie, X. B., and Wu, R. S., 2002, Extracting angle domain information from migrated wave field: 72nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1360 - 1363.
[11] Xu, S., and Lambaré, G., 2006, True amplitude Kirchhoff prestack depth migration in complex media: Chinese Journal of Geophysics (in Chinese), 49(5), 1431 - 1444.
[12] Yang, W. Y., Zhang, H. Z., Mao, J. G., Wang, H.Q., Wang, D.M., 2003, Finite-difference migration with compensation for absorption, dispersion and transmission losses in seismic data: Geophysical Prospecting for Petroleum (in Chinese), 42(3), 285 - 288.
[13] Ye, Y. M., Li, Z. C., Tong, Z. Q., and Cao, W. J., 2008, Xwfd preserved-amplitude migration with dual-complexity: Chinese Journal of Geophysics (in Chinese), 52(5), 1511 - 1519.
[14] Zhang, G. Q., 1993, System of coupled equations for downgoing and upcoming waves: Journal of Applied Math. (in Chinese), 16(2), 251 - 263.
[15] Zhang, G. Q., 2000, Wave field split square root operator and migration: The Collection of Thesis About Reflected Seismic Theory (in Chinese), Tongji University Press, Shanghai, China.
[16] Zhang, Y., Zhang, G. Q., and Bleistein, N., 2005, Theory of true-amplitude one-way wave equations and true-amplitude common-shot migration: Geophysics, 70(4), E1 - E10.
[17] Zhang, Y., 2006, The theory of true amplitude one-way wave equation migration: Chinese Journal of Geophysics (in Chinese), 49(5), 1410 - 1430.
[18] Zhang, L.Y., and Liu, Y., 2008, Anisotropic converted wave amplitude-preserving prestack time migration by the pseudo-offset method: Applied Geophysics, 5(3), 204 - 211.
[1] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[2] 刘继承,谢小碧,陈波. 基于Poynting矢量的角度域逆时偏移成像及对成像幅度的校正[J]. 应用地球物理, 2017, 14(4): 505-516.
[3] 吴娟, 陈小宏, 白敏, 刘国昌. 基于吸收衰减补偿的多分量高斯束叠前深度偏移[J]. 应用地球物理, 2015, 12(2): 157-168.
[4] 刘少勇, 王华忠, 刘太臣, 胡英, 张才. 基于旅行时梯度场的Kirchhoff PSDM角道集生成方法研究[J]. 应用地球物理, 2015, 12(1): 64-72.
[5] 刘国昌, 陈小宏, 宋建勇, 芮振华. 地层构造约束的稳定最小平方成像条件研究[J]. 应用地球物理, 2012, 9(4): 459-467.
[6] 周辉, 林鹤, 盛善波, 陈汉明, 王颖. 补偿吸收衰减的高角度叠前深度偏移方法[J]. 应用地球物理, 2012, 9(3): 293-300.
[7] 张凯, 李振春, 曾同生, 秦宁, 姚云霞. 基于起伏地表的层析速度反演方法研究[J]. 应用地球物理, 2012, 9(3): 313-318.
[8] 孙文博, 孙赞东, 朱兴卉. 相对保幅的角度域VSP逆时偏移[J]. 应用地球物理, 2011, 8(2): 141-149.
[9] 周艳辉, 高静怀, 王保利, 何洋洋. 基于局域化相空间的VSP成像[J]. 应用地球物理, 2010, 6(1): 31-40.
[10] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 6(1): 49-56.
[11] 周艳辉, 高静怀, 王保利, 何洋洋. 基于局域化相空间的VSP成像[J]. 应用地球物理, 2010, 7(1): 31-40.
[12] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 7(1): 49-56.
[13] 赵太银, 胡光岷, 贺振华, 黄德济. 二阶精度广义非线性全局最优的偏移速度反演方法[J]. 应用地球物理, 2009, 6(2): 138-149.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司