APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (1): 42-49    DOI: 10.1007/s11770-009-0008-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
横向各向同性介质紧致交错网格有限差分波场模拟
杜启振1,2,李宾1,2,侯波1,2
1. 中国石油大学(华东)地球资源与信息学院,山东东营 257061
2. 中国石油大学中国石油天然气集团公司物探重点实验室,北京 102202
Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme
Du Qi-Zhen1,2, Li Bin1,2, and Hou Bo1,2
1. School of Earth Resource and information, China University of petroleum (East China), Dongying 257061, China.
2. CNPC Key Laboratory of Geophysical Exploration, China University of petroleum (Beijing), Beijing 102202, China.
 全文: PDF (623 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对有限差分数值模拟的频散问题,本文将交错网格技术和紧致差分格式相结合,推导了横向各向同性介质一阶速度-应力波动方程的紧致交错网格差分格式;对比分析了紧致交错网格差分格式、交错网格差分格式以及紧致差分格式的截断误差主项,并利用Fourier误差分析方法分析了上述三种差分格式的近似精度;在此基础上,分别采用上述三种差分格式进行了波场数值模拟。结果表明,当差分方程阶数相同时,紧致交错网格差分格式截断误差最小,数值频散最弱,差分精度最高,证实了该方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜启振
李宾
侯波
关键词横向各向同性介质   紧致交错网格   一阶速度-应力波动方程   数值频散   波场模拟     
Abstract: To deal with the numerical dispersion problem, by combining the staggered-grid technology with the compact finite difference scheme, we derive a compact staggered-grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.
Key wordstransversely isotropic medium   compact staggered-grid   the first-order velocity-stress wave equations   numerical dispersion   wave field simulation   
收稿日期: 2008-07-26;
基金资助:

本研究由国家高技术研究发展专项经费(2006AA06Z202)、国家自然科学基金(批准号:40304008)、中国石油集团公司物探重点实验室开放基金(GPKL0802)、中国石油大学(华东)研究生创新基金(S2008-01)和教育部新世纪优秀人才支持计划(NCET-07-0845)资助。

引用本文:   
杜启振,李宾,侯波. 横向各向同性介质紧致交错网格有限差分波场模拟[J]. 应用地球物理, 2009, 6(1): 42-49.
DU Qi-Zhen,LI Bin,HOU Bo. Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme[J]. APPLIED GEOPHYSICS, 2009, 6(1): 42-49.
 
[1] Bendiks, 2005, A staggered compact finite difference formulation for the compressible Navier-Stokes equations: J. Comput. Phys., 208, 675 - 690.
[2] Crase, E., 1990, High-order (space and time) finite-difference and modeling of elastic wave equa-tion: 60th Ann. Internat. Mtg., Soc. Explor. Geophys., Expand Abstracts, 987 - 991.
[3] Dong, L. G., Ma, Z. T., and Cao, J. Z., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics (in Chinese), 43(3), 410 - 415.
[4] Lele, S. K., 1992, Compact finite difference schemes with spectral-like resolution: J. Comput. Phys., 103, 16 - 19.
[5] Levander, A. R., 1988, Four-order finite-difference P-SV seismograms: Geophysics, 53(1), 1425 - 1436.
[6] Liu, Q. S., Shen, M. Y., and Liu, Y., 1996, New numerical method for general boundary value problems of ordinary differential equations: Journal of Tsinghua University (Science & Technology) (in Chinese), 36(4), 7 - 12.
[7] Liu, Y., and Wei, X. C., 2008, Finite-difference numerical modeling with even-order accuracy in two-phase anisotropic media: Applied Geophysics, 5(2), 107 - 114.
[8] Ma, Y. W., and Fu, D. X., 1996, Direct numerical simulation of plane mixed flow reverse structure: Science in China (Series A) (in Chinese), 26(7), 657 - 663.
[9] Madariaga, R., 1976, Dynamics of an expanding circular fault: BSSA, 66(3), 639 - 666.
[10] Nagarajan, S., Lele, S. K., and Ferziger, J. H., 2003, A robust high-order compact method for large eddy simulation: J. Comput. Phys., 191, 392 - 419.
[11] Shen, M. Y., and Niu, X. L., 2003, The optimized three-point fifth-order accurate generalized compact scheme: Acta Aerodynamica Sinica (in Chinese), 21(4), 383 - 390.
[12] Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite difference method: Geophysics, 49(11), 1933 - 1941.
[13] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method: Geophysics, 51(4), 889 - 893.
[14] Wang, S. Q., Yang, D. H., and Yang, D. K., 2002, Compact finite difference scheme for elastic equation: Journal of Tsinghua University (Science & Technology) (in Chinese), 42(8), 1128 - 1131.
[15] Wang, Z. J., He, Q. D., and Wang, D. L., 2008, The numerical simulation for a 3D two-phase anisotropic media based on BISQ model: Applied Geophysics, 5(1), 24 - 34.
[16] Wu, G. C., and Wang, H. Z., 2005, Analysis of numerical dispersion in wave-field simulation: Progress in Geophysics (in Chinese), 20(1), 58 - 65.
[17] Zhang, W. S., 2006, Finite difference methods for partial differential equations in science computation: Higher Education Press, Beijing, 61 - 66.
[1] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[2] 张朝元, 马啸, 杨磊, 宋国杰. 基于八阶NAD算子的保辛分部Runge-Kutta方法及其波场模拟[J]. 应用地球物理, 2014, 11(1): 89-106.
[3] 杨皓星, 王红霞. 用于地震波场模拟的PML边界衰减因子研究[J]. 应用地球物理, 2013, 10(1): 63-70.
[4] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 7(1): 57-65.
[5] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 6(1): 57-65.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司