APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (1): 30-41    DOI: 10.1007/s11770-009-0005-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
地震正演模拟复杂构造中的地震波传播
杨金华,刘韬,唐跟阳,胡天跃
北京大学地球与空间科学学院,北京 100871
Modeling seismic wave propagation within complex structures
Yang Jinhua1, Liu Tao1, Tang Genyang1, and Hu Tianyue1
1. School of Earth and Space Sciences, Peking University, Beijing 100871, China.
 全文: PDF (2370 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震正演模拟技术是研究地震波在复杂介质中传播规律的有效途经,尤其在地质构造及其复杂的中国西部地区,其意义更是重大。本文介绍了两种新的正演模拟技术:有限元有限差分方法(FE-FDM)和任意精细积分方法(ADPI),并结合实例分析来验证FE-FDM和ADPI算法的实际效果,结果证明这两种方法能够有效地适用于复杂介质下的地震波传播性质的研究。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨金华
刘韬
唐跟阳
胡天跃
关键词有限差分   有限元   正演   任意精细积分     
Abstract: Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.
Keywords: finite difference|finite element|modeling|arbitrary precise integration
Key wordsfinite difference   finite element   modeling   arbitrary precise integration   
收稿日期: 2008-08-31;
基金资助:

本研究由国家自然科学基金(40574050, 40521002)、国家基础研究项目(2007CB209602)和中石油重点研究项目(06A10101)资助。

引用本文:   
杨金华,刘韬,唐跟阳等. 地震正演模拟复杂构造中的地震波传播[J]. 应用地球物理, 2009, 6(1): 30-41.
YANG Jin-Hua,LIU Tao,TANG Gen-Yang et al. Modeling seismic wave propagation within complex structures[J]. APPLIED GEOPHYSICS, 2009, 6(1): 30-41.
 
[1] Alford, R. M., Kelly, K. R., and Boore, D. M., 1974, Accuracy of finite-difference modeling of the acoustic wave equation: Geophysics, 39(6), 834 - 842.
[2] Carcione, J. M., Herman, G. C., and ten Kroode, A. P. E., 2002, Seismic modeling: Geophysics, 67(4), 1304 - 1325.
[3] Chang, X., Liu, Y., Wang, H., and Li, F., 2002, 3-D tomographic static correction: Geophysics, 67(4), 1275 - 1285.
[4] Coates, R. T., and Schoenberg, M., 1995, Finite-difference modeling of faults and fractures: Geophysics, 60(5), 1514 - 1526.
[5] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294 - 307.
[6] Dong, Y., and Yang, H. Z., 2001, Solution of 2-d wave reverse-time propagation problem by the finite element-finite difference method: Theoretical and Computational Acoustics:,World Scientific Press, Singapore.
[7] Du, X., and Bancroft, J. C., 2004, 2-D wave equation modeling and migration by a new finite difference scheme based on the Galerkin method: 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts., 1107 - 1110.
[8] Ekren, B. O., and Ursin, B., 1999, True-amplitude frequency-wave number constant-offset migration: Geophysics, 61(3), 915 - 924.
[9] Hestholm, S., Moran, M., Ketcham, S., Anderson, T., Dillen, M., and McMechan, G., 2006, Effects of free-surface topography on moving-seismic-source modeling: Geophysics, 71(6), T159 - T166.
[10] Komatictsch, D., and Tromp, J., 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation: Geophys. J. Int., 124, 146-153.
[11] Li, G. F., and Peng, S. P., 2008, Static corrections for low S/N ratio converted-wave seismic data: Applied Geophysics, 5(1), 44 - 49.
[12] Li, J. F., and Zhao, Q., 2006, Figures of seismic physical modeling for oil and gas exploration: China Petroleum Industry Press, Beijing.
[13] Lines, L. R., Slawinski, R., and Bording, R. P., 1999, A recipe for stability of finite-difference wave-equation computations: Geophysics, 64(3), 967 - 979.
[14] Liu, T., Hu, T. Y., and Yang, J. H., 2008, Finite element-finite difference method in 2-D seismic modeling: 70th EAGE Conference, Extended Abstracts, Rome, P054.
[15] Ma, S., Archuleta, R. J., and Liu, P., 2004, Hybrid modeling of elastic P-SV wave motion: A combined finite-element and staggered-grid finite-difference approach: Bulletin of the Seismological Society of America, 94(4), 1557 - 1563.
[16] Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations: Geophysics, 49(5), 533 - 549.
[17] Moubarak, H., Bancroft, J., Lawton, D., Isaac, H., Mewhort, L., Emery, D., and Scott, B., 2007, A modeling study for imaging in structurally complex media: case history: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2002 - 2005
[18] Oliveira, S. A. M., 2003, A fourth-order finite-difference method for the acoustic wave equation on irregular grids: Geophysics, 68(2), 672 - 676.
[19] Tang, G. Y., Hu, T. Y. and Yang, J. H., 2007, Applications of a precise integration method in forward seismic modeling: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2130 - 2133.
[20] Tessmer, E., 2000, Seismic finite-difference modeling with spatially varying time steps: Geophysics, 65(4), 1290 - 1293.
[21] Thore, P., 2006, Accuracy and limitation in seismic modeling of reservoir: 76th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1674-1677
[22] van der Neut, J., Sen, M. K., and Wapenaar, K., 2008, Seismic reflection coefficients of faults at low frequencies: a model study: Geophysical Prospecting, 56(3), 287 - 292.
[23] van Vossen, R., and Trampert, J., 2007, Full-waveform static correction using blind channel identification: Geophysics, 72(4), U55 - U66.
[24] Wang, X. C., and Liu, X. W., 2007, 3-D acoustic wave equation forward modeling with topography: Applied Geophysics, 4(1), 8 - 15.
[25] Wang, R. Q., Jia, X. F., and Hu, T. Y., 2004, The precise finite difference method for seismic modeling: Applied Geophysics, 1(2), 69 - 74.
[26] Xu, Y. X., Xia, J. H., and Miller, R. D., 2007, Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach: Geophysics, 72(5), SM147 - SM153.
[27] Yoon, K, Marfurt, K. J., and Starr, W., 2004. Challenges in reverse-time migration: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1057 - 1060.
[28] Zhang, J., and Liu, T. L., 2002, Elastic wave modeling in 3D heterogeneous media: Geophysical Journal International, 150(3), 780 - 799.
[29] Zhang, W., and Chen, X., 2006, Traction image method for irregular free surface boundaries in finite difference seismic wave simulation: Geophysical Journal International, 167, 337 - 353.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[3] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[4] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[5] 周峰,汤井田,任政勇,张志勇,陈煌,皇祥宇,钟乙源. 基于有限元-积分方程的三维可控源电磁法混合正演模拟[J]. 应用地球物理, 2018, 15(3-4): 536-544.
[6] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[7] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[8] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[9] 曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
[10] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[11] 徐凯军,孙洁. 基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究[J]. 应用地球物理, 2018, 15(2): 332-341.
[12] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[13] 王兵,张阔,陶果,刘鹤,张晓亮. 基于混合PML的频域有限元声反射测井正演模拟[J]. 应用地球物理, 2018, 15(1): 35-45.
[14] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[15] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司