APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (2): 201-209    DOI: 10.1007/s11770-013-0378-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维曲波变换L1范数约束稀疏反演一次波估计方法研究
冯飞,王德利,朱恒,程浩
吉林大学地球探测科学与技术学院,长春 130026
Estimating primaries by sparse inversion of the 3D Curvelet transform and the L1-norm constraint
Feng Fei1, Wang De-Li1, Zhu Heng1, and Cheng Hao1
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
 全文: PDF (1075 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文将稀疏反演一次波估计(EPSI)方法进行了改进,使得EPSI转换成双凸L1范数约束的最优化问题,采用交替优化方式进行一次波反射系数和震源子波的交替估计,直接对一次波反射系数进行估计,可同时获得震源子波与一次波反射系数。在反演一次波反射系数时,将三维曲波变换引入进来作为稀疏约束,从而避免的SRME中的预测减去的过程。该方法不仅减少对有效信息的损伤,而且提高了多次波去除效果。该方法同样是基于波动方程的自由表面多次波压制技术,在复杂海底情况下具有良好的去除的效果。理论与实际数据试算取得良好效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯飞
王德利
朱恒
程浩
关键词稀疏反演   一次波反射系数   三维曲波变换   L1正则化   凸优化     
Abstract: In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and L1-norm regularization, and use alternating  optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation-based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.
Key wordsSparse inversion   primary reflection coefficients   3D Curvelet transformation   L1 regularization   convex optimization   
收稿日期: 2012-08-16;
基金资助:

本研究由国家科技重大专项(编号:2011ZX05023-005-008)资助。

引用本文:   
冯飞,王德利,朱恒等. 三维曲波变换L1范数约束稀疏反演一次波估计方法研究[J]. 应用地球物理, 2013, 10(2): 201-209.
FENG Fei,WANG De-Li,ZHU Heng et al. Estimating primaries by sparse inversion of the 3D Curvelet transform and the L1-norm constraint[J]. APPLIED GEOPHYSICS, 2013, 10(2): 201-209.
 
[1] Berkhout, A. J., and Verschuur, D. J., 2006, Imaging of multiple reflections: Geophysics, 71(4), SI209 - SI220.
[2] Boyd, S., Vandenberghe, L., 2004, Convex Optimization. Cambridge University Press, USA, 127 - 152.
[3] Cao, J. J., Wang, Y. F., and Yang, C. C., 2012, Seismic data restoration based on compressive sensing using the regularization and zero-norm sparse optimization: Chinese J, Geophys. (in Chinese), 55(2), 596 - 607.
[4] Donoho, D., 2006, For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution: Communications on Pure and Applied Mathematics, 59(7), 797 - 829.
[5] Hennenfent, G., Van, Den. Berg. E., Friedlander, M. P., et al., 2008, New insights into one-norm solvers from the Pareto curve. Geophysics, 73(4), A23 - A26.
[6] Herrmann, F. J., D. Wang, G. Hennenfent, and P. P. Moghaddam, 2008, Curvelet-based seismic data processing: a multiscale and nonlinear approach: Geophysics, 73, A1 - A5.
[7] Herrmann, F. J., 2010, Randomized sampling and sparsity:Getting more information from fewer samples: Geophysics, 75, WB173 - WB187.
[8] Herrmann, F. J., 2012, Pass on the message: recent insights in large-scale sparse recovery: Presented at the EAGE gram, EAGE, 74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012, Copenhagen, Denmark, 4 - 7 June 2012 .
[9] Lin, T. T. Y., and Herrmann, F. J., 2010, Stabilized estimation of primaries by sparse inversion: 72nd EAGE Conference & Exhibition incorporating SPE EUROPEC 2010, Barcelona, Spain, 14 - 17 June 2010.
[10] Li, X. C., Liu, Y. K., Chang, X. et al., 2010, The adaptive subtraction of multiple using the equipoise multichannel L1-norm matching: Chinese J, Geophys. (in Chinese), 53(4), 963 - 973.
[11] Ma, J. T., Sen, K. Mrinal., Chen, X. H., and Yao, F. C., 2011, OBC multiple attenunation technique using SRME theory: Chinese J, Geophys. (in Chinese). 54(11), 2960 - 2966
[12] Van Groenestijn, G. J. A., and Verschuur, D. J., 2009, Estimating primaries by sparse inversion and application to near-offset data reconstruction: Geophysics, 74(3), A23 - A28.
[13] Van Groenestijn, G. J. A., and Verschuur, D. J., 2009, Estimation of primaries and near-offset reconstruction by sparse inversion: Marine data applications: Geophysics, 74(6), R119 - R128.
[14] Van Den Berg. E., and Friedlander, M. P., 2008, Probing the pareto frontier for basis pursuit solutions: SIAM J. Scientific Computing, 31(2), 890 - 912.
[15] Verschuur, D. J., and Berkhout, A. J., 1997, Estimation of multiple scattering by iterative inversion, Part II: Practical aspects and examples: Geophysics, 62(5), 1596 - 1611.
[16] Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A., 1992, Adaptive surface-related multiple elimination: Geophysics, 57(9), 1166 - 1177.
[17] Ying, L., Demanet, L., and Candès, E. J., 2005, 3-D discrete curvelet transform: Proceedings SPIE Wavelets XI, San Diego, 5914, 344 - 354.
[18] Zhang, X. Y., Zhu, J. M.,Yang, W. et al., 2011, Group technology of antimultiple in marine seismic data processing and its application: Geophysical and Geochemical Exploration, 35(4), 511 - 515.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司