APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (1): 1-13    DOI: 10.1007/s11770-013-0364-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
地震尺度下碳酸盐岩储层的岩石物理建模方法
李景叶1,2,陈小宏1,2
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
2. 中国石油大学CNPC物探重点实验室,北京 102249
A rock-physical modeling method for carbonate reservoirs at seismic scale
Li Jing-Ye1,2 and Chen Xiao-Hong1,2
1. State Key Lab of Petroleum Resources and Prospecting, Beijing 102249, China.
2. CNPC Key Lab of China University of Petroleum (Beijing), Beijing 102249, China.
 全文: PDF (1128 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 碳酸盐岩油藏的强非均质性以及孔隙结构的复杂性,使得作为连接油藏参数与地震参数重要桥梁的岩石物理模型,以及作为油藏预测和定量表征最有效工具的流体替换成为岩石物理建模的难点与重点。在碳酸盐岩储层复杂孔隙结构与地震尺度下碳酸盐岩储层非均质性分析基础上,研究采用岩石网格化方法,将地震尺度下非均质碳酸盐岩储层岩石划分为具有独立岩石参数的均质岩石子体,根据岩石孔隙成因与结构特征采用不同岩石物理模型分步计算岩石子块干岩石弹性模量,并根据不同孔隙连通性进行流体替换,计算饱和不同流体岩石弹性模量。基于计算的岩石子块弹性模量,采用Hashin-Shtrikman-Walpole弹性边界计算理论方法实现地震尺度下碳酸盐岩储层弹性参数计算。通过对含有不同类型孔隙组合碳酸盐岩储层模型的弹性模量进行计算与分析,明确不同孔隙对岩石弹性参数的影响特征,模拟分析结果与实际资料认识一致。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李景叶
陈小宏
关键词地震尺度   流体替换   碳酸盐岩   岩石物理建模   非均匀     
Abstract: Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.
Key wordsSeismic scale   fluid substitution   carbonate rock   rock physics modeling   heterogeneity   
收稿日期: 2012-09-16;
基金资助:

本研究由国家自然科学项目(编号:41074098)、国家科技重大专项课题(编号:2011ZX05023-005-005)和中国石油大学(北京)项目(编号:KYJJ2012-05-08)联合资助。

引用本文:   
李景叶,陈小宏. 地震尺度下碳酸盐岩储层的岩石物理建模方法[J]. 应用地球物理, 2013, 10(1): 1-13.
LI Jing-Ye,CHEN Xiao-Hong. A rock-physical modeling method for carbonate reservoirs at seismic scale[J]. APPLIED GEOPHYSICS, 2013, 10(1): 1-13.
 
[1] Abriel, W. L., 2009, Reservoir geophysics: Applications: Society of Exploration Geophysicists, Tulsa.
[2] Avseth, P. R., Mukerji, T., and Mavko, G., 2005, Quantitative seismic interpretation: Cambridge University Press, New York, 80 - 120.
[3] Ba, J., Carcione, J. M., Cao, H., et al., 2012, Velocity dispersion and attenuation of P waves in partially-saturated rocks: Wave propagation equations in double-porosity media: Chinese J. Geophys., 55(1), 219 - 231.
[4] Batzle, M., and Wang, Z., 1992, Seismic properties of pore fluids: Geophysics, 57(11), 1396 - 1408.
[5] Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range, II. Higher frequency range: J. Acoust. Soc. Amer., 28, 168 - 191.
[6] Biot, M. A., 1962, Mechanics of deformation and acoustic propagation in porous media: J. Appl. Phys., 33(4), 1482 - 1498.
[7] Dutta, N. C., and Ode, H., 1979, Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (white model) Part I: Biot theory: Geophysics, 44, 1777 - 1788.
[8] Dvorkin, J., and Nur, A., 1993, Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms: Geophysics, 58, 524 - 533.
[9] Dvorkin, J., and Nur, A., 1996, Elasticity of high-porosity sandstones: Theory for two North Sea datasets: Geophysics, 61, 1363 - 1370.
[10] Fabricius, I., Bachle, G., and Eberli, G., 2010, Elastic moduli of dry and water-saturated carbonates-Effect of depositional texture, porosity, and permeability: Geophysics, 75(3), N65-N78.
[11] Gassmann, F., 1951, Elastic waves through a packing of spheres: Geophysics, 16, 673 - 685.
[12] Ghosh, R., and Sen, M., 2012, Predicting subsurface CO2 movement: From laboratory to field scale: Geophysics, 77(3), M27 - M37.
[13] Hashin, Z., and Shtrikman, S., 1963, A variational approach to the elastic behavior of multiphase materials: Journal Mechanics Physical Solids, 11, 127 - 140.
[14] Jouini, M., and Vega, S., 2011, Simulation of elastic properties in carbonates: The Leading Edge, 30(12), 1400 - 1407.
[15] Mavko, G., and Mukerji, T., 1995, Pore space compressibility and Gassmann’s relation: Geophysics, 60(6), 1743 - 1749.
[16] Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The rock physics handbook 2nd edition: Cambridge University Press, New York, 207 - 311.
[17] Nolen-Hoeksema, R. C., 2000, Modulus-porosity relations, Gassmann’s equation, and the low-frequency elastic-wave response to fluids: Geophysics, 65(5), 1355 - 1363.
[18] Para, J. O., 1997, The transversely isotropic poroelastic wave equation including the Biot and the squirt mechanisms: Theory and application: Geophysics, 62, 309 - 318.
[19] Ruiz, F., and Dvorkin, J., 2009, Sediment with porous grains: rock-physics model and application to marine carbonate and opal: Geophysics, 74(1), E1 - E15.
[20] Sams, M. S., and Andrea, M., 2001, The effect of clay distribution on the elastic properties of sandstones: Geophysical Prospecting, 49(3), 128 - 150.
[21] Sayers, C. M., 2008, The elastic properties of carbonates: The Leading Edge, 27(8), 1020 - 1023.
[22] Tang, X. M., 2011, Unified theory for elastic wave propagation through porous media containing cracks-An extension of Biot’s poroelastic wave theory: Sci. China Earth Sci., 41(6), 784 - 795.
[23] Vega, S., Prajapat, J. V., and al Mazrooei, A., 2010, Preliminary experiments to evaluate the Gassmann equation in carbonate rocks: Calcite and dolomite: The Leading Edge, 29(8), 906 - 911.
[24] Verwer, K., Eberli, G., Baechele, G., et al., 2010, Effect of carbonate pore structure on dynamic shear moduli: Geophysics, 75(1), E1 - E8.
[25] Vialle, S., and Vanorio, T., 2011, Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2-saturated water: Geophysical Research Letters, 38(1), L01302, 1 - 5.
[26] Wang, H. Y., Sun, Z. D., and Chapman, M., 2012, Velocity dispersion and attenuation of seismic wave propagation in rocks: Acta Petrolei Sinica, 33(2), 332 - 342.
[27] Wood, A. W., 1955, A textbook of sound: The MacMillan Co., New York.
[28] Xu, S., and Payne, M., 2009, Modeling elastic properties in carbonate rocks: The Leading Edge, 28(1), 66 - 74.
[29] Yang, K. D., Yang, D. H., and Wang, S. Q., 2002, Wave-field simulation based on the Boit-squirt equation: Chinese J. Geophys., 45, 863 - 861.
[1] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[2] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[3] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[4] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[5] 李雄炎, 秦瑞宝, 刘春成, 毛志强. 基于岩石导电效率建立碳酸盐岩储层饱和度的计算方法[J]. 应用地球物理, 2014, 11(2): 215-222.
[6] 于豪, 巴晶, Carcione Jose, 李劲松, 唐刚, 张兴阳, 何新贞, 欧阳华. 非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测[J]. 应用地球物理, 2014, 11(1): 9-22.
[7] 郭玉倩, 马宏达, 石开波, 曹宏, 黄录忠, 姚逢昌, 胡天跃. 多孔颗粒上界限模型及其在塔里木碳酸盐岩中的应用[J]. 应用地球物理, 2013, 10(4): 411-422.
[8] 刘灵, 耿建华, 郭彤楼. 横波速度预测的边界加权平均法[J]. 应用地球物理, 2012, 9(4): 421-428.
[9] 聂建新, 巴晶, 杨顶辉, 晏信飞, 袁振宇, 乔海鹏. 基于Kelvin-Voigt黏弹性骨架的含非饱和流体孔隙介质BISQ模型[J]. 应用地球物理, 2012, 9(2): 213-222.
[10] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
[11] 李景叶. 基于流体替换技术的地震AVO 属性气藏识别[J]. 应用地球物理, 2012, 9(2): 139-148.
[12] 李灿苹, 刘学伟. 随机介质非均匀地质体尺度研究[J]. 应用地球物理, 2011, 8(4): 363-369.
[13] 贺锡雷, 贺振华, 汪瑞良, 王绪本, 蒋炼. 求取岩石基质模量的线形拟合方法[J]. 应用地球物理, 2011, 8(3): 155-162.
[14] 林凯, 熊晓军, 杨晓, 贺振华, 曹俊兴, 张玺华, 王萍. 自适应基质矿物体积模量提取和流体替换验证[J]. 应用地球物理, 2011, 8(2): 110-116.
[15] 李宁, 武宏亮, 冯庆付, 王克文, 石玉江, 李庆峰, 罗兴平. 火山岩、白云岩储层基质孔隙度评价方法及应用效果分析[J]. 应用地球物理, 2009, 6(3): 287-298.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司