APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (4): 315-324    DOI: 10.1007/s11770-010-0259-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
Curvelet阈值迭代法地震随机噪声压制
王德利1,仝中飞2,唐晨1,朱恒1
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 中海油研究总院,北京 100027
An iterative curvelet thresholding algorithm for seismic random noise attenuation
Wang De-Li1, Tong Zhong-Fei2, Tang Chen1, and Zhu Heng1
1. College of Geo-Exploration Science & Technology, Jilin University, Changchun 130026, China.
2. CNOOC Research Institute, Beijing 10027, China.
 全文: PDF (1614 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文将近些年发展起来的多尺度分析技术——Curvelet变换与求解优化反演问题的阈值迭代法相结合,研究了基于Curvelet变换的阈值迭代法在地震数据随机噪声衰减中的应用。充分利用了Curvelet变换对地震数据表示的稀疏性,提出将地震数据随机噪声压制问题转化为基于Curvelet稀疏变换的L1范数最优化问题,并采用前人提出的阈值迭代法求解。通过与常规的中值滤波、FX反褶积和小波阈值法去噪方法对比,理论合成数据和实际数据试算表明,Curvelet阈值迭代法去噪法具有优势,该法不仅能够获得较高的信噪比,而且对有效信号的损失较小。为充分利用Curvelet的多尺度、多方向特性,提出了在Curvelet阈值迭代法去噪结果的基础上再进行方向控制,进一步提高了数据信噪比。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王德利
仝中飞
唐晨
朱恒
关键词Curvelet变换   阈值迭代法   随机噪声衰减     
Abstract: In this paper, we explore the use of iterative curvelet thresholding for seismic random noise attenuation. A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm. Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm, FX deconvolution, and wavelet thresholding, the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio (SNR) and give higher signal fidelity at the same time. Furthermore, to make better use of the curvelet transform such as multiple scales and multiple directions, we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR.
Key wordscurvelet transform   iterative thresholding   random noise attenuation   
收稿日期: 2010-06-17;
基金资助:

本研究由国家科技重大专项子课题(2008ZX05023-005-013)资助。

引用本文:   
王德利,仝中飞,唐晨等. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理, 2010, 7(4): 315-324.
WANG De-Li,TONG Zhong-Fei,TANG Chen et al. An iterative curvelet thresholding algorithm for seismic random noise attenuation[J]. APPLIED GEOPHYSICS, 2010, 7(4): 315-324.
 
[1] Candès, E., and Donoho, D., 1999, Curvelets: A surprisingly effective non-adaptive representation of objects with edges, TN: Vanderbilt University Press, USA.
[2] Candès, E., and Demanet, L., 2002, Curvelets and Fourier integral operators: Compte Rendus del’ Academie des Sciences, Paris, Serie I, 336, 395 - 398.
[3] Candès, E., and Guo, F., 2002, New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction: Signal Processing, 82, 1519 - 1543.
[4] Candes, E., and Donoho, D., 2004, New tight frames of curvelets and optimal representations of objects with C2 singularities: Comm. Pure Appl. Math., 57(2), 219 - 266.
[5] Candès, E., Demanet, L., and Donoho, D., 2006, Fast discrete curvelet transforms: SI-AM Multiscale Modeling and Simulation, 5, 861 - 899.
[6] Daubechies, I., Defrise, M., and De Mol, C., 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Comm. Pure and Appl. Math., 57, 1413 - 1457.
[7] Elad, M., Starck, J. L., and Querre, P., 2005, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA): Appl. Comput. Harmon. Anal, 19, 340 - 358.
[8] Hennenfent, G., and Herrmann, F. J., 2004, Three-term amplitude-versus-offset (AVO) inversion revisited by curvelet and wavelet transforms: 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 211 - 214.
[9] Hennenfent, G., and Herrmann, F. J., 2008, Simply denoise: Wavefield reconstruction via jittered undersampling: Geophysics, 73(3), V19 - V28.
[10] Hennenfent, G., van den Berg, E., Friedlander, M. P., and Herrmann, F. J., 2008, New insights into one-norm solvers from the Pareto curve: Geophysics, 73(4), 23 - 26.
[11] Herrmann, F. J., and Verschuur, E., 2004, Curvelet-domain multiple elimination with sparseness constraints: 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1333 - 1336.
[12] Herrmann, F. J., Wang, D. L., and Hennenfent, G., 2007, Seismic data processing with curvelets: A multiscale and nonlinear approach: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2220 - 2224.
[13] Herrmann, F. J., and Hennenfent, G., 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International, 173(1), 233 - 248.
[14] Huang, W., 2007, Research on curvelet transform and its applications on image processing: Masters Thesis, Xian University of Technology.
[15] Huub, D., and Maarten, V., 2004, Wave-character preserving pre-stack map migration using curvelets: 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 961 - 964.
[16] Neelamani, R., Baumstein, A. I., Gillard, D. G., and Hadidi, M. T., and Soroka, W. L., 2008, Coherent and random noise attenuation using the curvelet transform: The Leading Edge, 27(2), 240 - 248.
[17] Wang, D. L., Saab, R., Yilmaz, ?., and Herrmann, F. J., 2008, Bayesian wavefield separation by transform-domain sparsity promotion: Geophysics, 73(5), A33 - A38.
[18] Wang, W., Gao, J. H., Li, K., Ma, K., and Zhang, X., 2009, Structure-oriented Gaussian filter for seismic detail preserving smoothing: Image processing: 16th IEEE International Conference, 601 - 604.
[19] Wu, F. P., 2008, Study on curvelet transform and its application in image processing: Masters Thesis, Jinan University.
[20] Zhang, H. L., Zhang, Y. C., and Song, S., 2008, Curvelet domain-based prestack seismic data denoise method: Oil Geophysical Prospecting, l43(5), 508 - 513.
[21] Zhao, X., 2007, Research and application of image denoising method based on curvelet transform: Masters Thesis, Shandong University of Science and Technology.
[1] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[2] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[3] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[4] 包乾宗, 李庆春, 陈文超. 基于Curvelet变换的探地雷达资料噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 301-310.
[5] 郑静静, 印兴耀, 张广智, 武国虎, 张作胜. 基于第二代Curvelet变换的面波压制[J]. 应用地球物理, 2010, 7(4): 325-335.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司