APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (4): 295-305    DOI: 10.1007/s11770-010-0258-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
南海重磁异常特征及火成岩分布
李淑玲1,2,3,孟小红2,3,郭良辉2,3,姚长利2,3,陈召曦12,3,李和群3
1. 地质过程与矿产资源国家重点实验室(中国地质大学, 北京),北京 100083
2. 地下信息探测技术与仪器教育部重点实验室(中国地质大学, 北京),北京 100083
3. 中国地质大学(北京)地球物理与信息技术学院,北京 100083
Gravity and magnetic anomalies field characteristics in the South China Sea and its application for interpretation of igneous rocks
Li Shu-Ling1,2,3, Meng Xiao-Hong2,3, Guo Liang-Hui2,3, Yao Chang-Li2,3, Chen Zhao-Xi1,2,3, and Li He-Qun3
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China.
3. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China.
 全文: PDF (2528 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 南海火成岩油气藏具有广阔的勘探前景,综合利用地球物理方法圈划与识别火成岩体、研究火成岩分布是火成岩油气藏研究的基础。针对南海重磁场特征,采用低纬度、变倾角化极技术进行了磁异常化极处理,利用优选延拓方法实现重磁异常分离并提取南海海域浅部火成岩重磁异常信息,利用磁异常三维相关成像给出南海火成岩的三维空间等效分布,在重磁梯度突出局部异常边界信息的基础上,通过梯度加权的重磁相关分析勾画不同类型火成岩的平面展布,火成岩的分布特征显示出受地壳深部结构及断裂构造的控制与影响。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李淑玲
孟小红
郭良辉
姚长利
陈召曦
李和群
关键词南海   重磁场   低纬度化极   优选延拓   火成岩分布     
Abstract: Igneous rocks in the South China Sea have broad prospects for oil and gas exploration. Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify igneous rock bodies. Aimed at the characteristics of gravity and magnetic fields in the South China Sea, several potential field processing methods are preferentially selected. Reduction to the pole by variable inclinations in the area of low magnetic latitudes is used to perform reduction processing on magnetic anomalies. The preferential continuation method is used to separate gravity and magnetic anomalies and extract the gravity and magnetic anomaly information of igneous rocks in the shallow part of the South China Sea. The 3D spatial equivalent distribution of igneous rocks in South China Sea is illustrated by the 3 D correlation imaging of magnetic anomalies. Since the local anomaly boundaries are highlighted gravity and magnetic gradients, the distribution characters of different igneous rocks are roughly outlined by gravity and magnetic correlation analysis weighted by gradient. The results show the distribution of igneous rocks is controlled and influenced by deep crustal structure and faulting.
Key wordsSouth China Sea')" href="#">

South China Sea   gravity and magnetic fields   reduction to the pole at low latitudes   preferential continuation   igneous rock distribution   

收稿日期: 2009-02-19;
基金资助:

本研究由国家863计划课题(2006AA06Z111、2006AA06A201-3和2006AA09A101-0201-3)、国家专项课题(SinoProbe-01-05)和地质过程与矿产资源国家重点实验室开放课题(GPMR0942)联合资助。

引用本文:   
李淑玲,孟小红,郭良辉等. 南海重磁异常特征及火成岩分布[J]. 应用地球物理, 2010, 7(4): 295-305.
LI Shu-Ling,MENG Xiao-Hong,GUO Liang-Hui et al. Gravity and magnetic anomalies field characteristics in the South China Sea and its application for interpretation of igneous rocks [J]. APPLIED GEOPHYSICS, 2010, 7(4): 295-305.
 
[1] Alaia, R., Patella, D., and Mauriello, P., 2008, Imaging quadrupolar geophysical anomaly sources by 3D probability tomography: Application to near-surface geoelectrical surveys: Journal of Geophysics and Engineering, 5, 359 - 370.
[2] Briais, A., Patriat, P., and Tapponnier, P., 1993, Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia: Journal of Geophysical Research, 98(B4), 6299 - 6328.
[3] Braitenberg, C., Wienecke,S., and Wang,Y., 2006, Basement structures from satellite-derived gravity field: South China Sea ridge: Journal of Geophysical Research, 111, B05407 - 05421.
[4] Iuliano, T., Mauriello, P., and Patella, D., 2002, Looking inside Mount Vesuvius by potential fields integrated probability tomographies: Journal of Volcanology and Geothermal Research, 113, 363 - 378.
[5] Mauriello, P., and Patella, D., 2001, Localization of maximum-depth gravity anomaly sources by a distribution of equivalent point masses: Geophysics, 66, 1431 - 1437.
[6] Meng, X., Guo, L., Chen, Z., Li, S., and Shi, L., 2009, A method for gravity anomaly separation based on preferential continuation and its application: Applied Geophysics, 6(3), 217 - 225.
[7] Pawlowski, R. S., 1995, Preferential continuation for potential-field anomaly enhancement: Geophysics, 60(2), 390 - 398.
[8] Patella, D., 1997, Introduction to ground surface self-potential tomography: Geophysical Prospecting, 45, 653 - 681.
[9] Yao, B., Wan, L., and Zeng, W., 2006, The 3D structure and evolution of the lithosphere of the South China Sea: Geological Publishing House, Beijing.
[10] Yao, C., Guan, Z., Gao, D., Zhang, X., and Zhang, Y., 2003, Reduction-to-pole of magnetic anomalies at low latitude with suppression filter: Chinese Journal of Geophysics (in Chinese), 46(5), 690 - 696.
[11] Yan, P., and Liu, H., 2005, Temporal and spatial distributions of mesocenozoic igneous rocks over South China Sea: Journal of Tropical Oceanography (in Chinese), 24(2), 33 - 41.
[12] Zhou, D., Liu, H., Chen, J., 2005, Mesozoic-cenozoic magmatism in southern South China Sea and its surrounding areas and its implications to tectonics: Geotectonica et Metalbgenia (in Chinese), 29(8), 354 - 363.
[1] 宋丽蓉, 于常青, 李桂花, 冯杨洋, 何俊杰. 西藏雄巴地区重力异常特征分析及火山沉积型硼矿成矿预测[J]. 应用地球物理, 2015, 12(4): 516-522.
[2] 李传辉, 赵倩, 徐红军, 冯凯, 刘学伟. 基于核磁共振测量的南海神狐海域天然气水合物对地层渗透率的影响研究[J]. 应用地球物理, 2014, 11(2): 207-214.
[3] 李淑玲, 李耀国, 孟小红. 南海东北部陆缘三维磁性结构研究[J]. 应用地球物理, 2012, 9(3): 237-246.
[4] 陈洁, 钟广见, 刘少华. 南海东北部构造及块体运动指向的地震相响应[J]. 应用地球物理, 2010, 7(4): 306-314.
[5] 孟小红, 郭良辉, 陈召曦, 李淑玲, 石磊. 基于优选向上延拓算子的重力异常分离方法[J]. 应用地球物理, 2009, 6(3): 217-225.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司