APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (3): 283-291    DOI: 10.1007/s11770-010-0254-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
一种评价致密砂岩储层孔隙结构的新方法及其应用
李潮流,周灿灿,李霞,胡法龙,张莉,王伟俊
中国石油勘探开发研究院,北京 100083
A novel model for assessing the pore structure of tight sands and its application
Li Chao-Liu1, Zhou Can-Can1, Li Xia1, Hu Fa-Long1, Zhang Li1, and Wang Wei-Jun1
1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China.
 全文: PDF (2938 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 致密砂岩储层的孔隙结构对其渗透性和电性影响显著,是此类复杂储层岩石物理研究的关键。针对仅从连通喉道半径评价渗透率的多解性以及储层孔隙结构与电性关系研究欠缺等不足,综合影响物性的主要因素,提出了一种同时考虑孔隙度、最大连通喉道半径及分选性三种因素的新型孔隙结构参数δ的计算公式。利用岩心及实测数据对比分析表明,δ值能够较连通喉道半径等传统方法更精确地刻画致密砂岩储层渗透性,同时它与储层电性具有密切关系,可用于估算地层因素F和胶结指数m。据此提出将孔隙结构对电阻率的影响进行归一化校正以及基于核磁共振测井预测储层完全含水电阻率R0的评价方法,从而突出储层流体性质变化引起的电性变化,并提供了一种新的致密砂岩储层流体识别思路,研究结果得到了实验资料和实际测井试油资料的验证。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李潮流
周灿灿
李霞
胡法龙
张莉
王伟俊
关键词低孔低渗   致密砂岩   孔隙结构   核磁共振   岩石物理     
Abstract: Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs. The uncertainty of permeability for tight sands is very common and the relationship between pore-structure and electrical property is often unclear. We propose a new parameter δ, integrating porosity, maximum radius of connected pore-throats, and sorting degree, for investigating the permeability and electrical properties of tight sands. Core data and wireline log analyses show that this new δ can be used to accurately predict the tight sands permeability and has a close relation with electrical parameters, allowing the estimation of formation factor F and cementation exponent m. The normalization of the resistivity difference caused by the pore-structure is used to highlight the influence of fluid type on Rt, enhancing the coincidence rate in the Pickett crossplot significantly.
Key wordslow permeability   tight sand   pore-structure   NMR   rock physics   
收稿日期: 2010-05-28;
基金资助:

本研究由国家油气重大专项和复杂储层油气测井解释理论方法与处理技术(2008ZX05020-001)资助。

引用本文:   
李潮流,周灿灿,李霞等. 一种评价致密砂岩储层孔隙结构的新方法及其应用[J]. 应用地球物理, 2010, 7(3): 283-291.
LI Chao-Liu,ZHOU Can-Can,LI Xia et al. A novel model for assessing the pore structure of tight sands and its application[J]. APPLIED GEOPHYSICS, 2010, 7(3): 283-291.
 
[1] Faruk, C., 2002, Relating permeability to pore connectivity using a power-law flow unit equation: Petrophysics, 43(6), 457 - 475.
[2] Gao, M., An, X. R., Di, S. H., Li, Z. L., Peng, Y., Gao, X., and Yu, P. Z., 2000, Evaluating porous structure of reservoir with MRIL data: Well Logging Technology, 24(3), 188 - 193.
[3] Hao, M. Q., Liu, X. Q., Hu, Y. L., Yang, Z. M., and Hou, J. F.,2007, Reservoir characteristics of micro-fractured ultra-low permeability reservoirs: ACTA Petrolei Sinica, 28(5), 93 - 98.
[4] He Y. D., Mao, Z. Q., Xiao, L. Z., and Zhang, Y. Z., 2005, A new method to obtain capillary pressure curve using NMR T2 distribution: Journal of Jilin University (Earth Science Edition), 35(2), 177 - 181.
[5] Hodgkins, M. A., and Howard, J. J., 1999, Application of NMR logging to reservoir characterization of low-resistivity sands in the Gulf of Mexico: AAPG Bulletin, 83(1), 114 - 127.
[6] Hofman, J. P., Looyestijn, W. J., Slijkerman, F. J., and Yakov, V., 2001, A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data: Petrophysics, 42(4), 334 - 343.
[7] Li, H. B., Zhu, J. Y., and Guo, H. K., 2008, Methods for calculating pore radius distribution in rock from NMR T2 spectra: Chinese Journal Of Magnetic Resonance, 25(2), 273 - 279.
[8] Li, T. J., Li, Z. F., and Zhao, Y. C., 2006, Consistency of pore structures between NMR and mercury intrusion method: Natural Gas Industry, 26(10), 57 - 59.
[9] Li, Y., Fang, Y. R., Deng, S. G., and Liu, B. K, 2008, Experimental study of pore structure with nuclear magnetic resonance: Progress In Exploration Geophysics, 31(2), 129 - 132.
[10] Luo, Z.T., and Wang, Y. C., 1986, Pore-structure of hydrocarbon reservoirs: Science Press, China.
[11] Mao, Z. Q., and Gao, C. Q, 2000, Theoretical simulation of the resistivity and pore structure of hydrocarbon bearing rocks: Petroleum Exploration and Development, 27(2), 87 - 89.
[12] Merkel, R., 2006, Integrated petrophysical models in tight gas sands: SPWLA Annual Symposium, Paper P.
[13] Sun, J. M., Liu, X. F., and Wang, H. T., 2009, Improved numerical simulation of electrical properties of reservoir rocks using morphology: SPWLA Annual Symposium, Paper ZZZ.
[14] Wang, Z. Z., and Xu, X. Q., 2010, Quantitative evaluation of reservoir separation with MR-ML technology: Chinese Journal of Magnetic Resonance, 27(2), 214 - 220.
[15] Wang, Z. Z., Yardenia, M., Kurt, S., and Yu, G., 2007, The practical application of NMR logging in carbonates: 3 case studies: SPWLA Annual Symposium, Paper X.
[16] Wang, Z. R., and Wu, D. X., 2001, Concentrative function and its primary application: ACTA Oceanologica Sinica, 23(2), 40 - 45.
[17] Xiao, L., Mao, Z. Q., Xiao, Z. X., and Zhang, C., 2008, A new method to evaluate reservoir pore structure consecutively using NMR and capillary pressure data: SPWLA Annual Symposium, Paper AA.
[18] Yun, H. Y., Zhao, W. J., Liu, B. K., Zhou, C. C., and Zhou, F. M., 2002, Researching rock pore structure with T2 distribution: Well Logging Technology, 26(1), 18 - 21.
[19] Zhang, L. H., Zhou, C. C., Liu, G. Q., Xiu, L. J., Li, C. X., and Liu, Z. H., 2006, Influence of pore structures on electric properties and well logging evaluation in low porosity and permeability reservoirs: Petroleum Exploration and Development, 33(6), 671 - 676.
[20] Zhao, J., Jiang, Y. Z., Wang, W. N., and Tong, M. S., 2003, Investigation of rock pore structure using NMR technology: Well Logging Technology, 27(3), 185-188.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 刘允隆,张元中,王拥军,王李庚. 川中侏罗系自流井组大安寨段致密灰岩孔隙结构实验研究[J]. 应用地球物理, 2018, 15(2): 165-174.
[3] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[4] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[5] 闫建平,何旭,耿斌,胡钦红,冯春珍,寇小攀,李兴文. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理, 2017, 14(2): 205-215.
[6] 刘杰,刘江平,程飞,王京,刘肖肖 . 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
[7] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[8] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[9] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[10] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[11] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[12] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[13] 黄欣芮, 黄建平, 李振春, 杨勤勇, 孙启星, 崔伟. 基于各向异性致密砂岩油储层的地震岩石物理建模及脆性指数研究[J]. 应用地球物理, 2015, 12(1): 11-22.
[14] 边环玲, 关雎, 毛志强, 鞠晓东, 韩桂琴. 孔隙结构对储层电性及测井解释评价的影响[J]. 应用地球物理, 2014, 11(4): 374-383.
[15] 印兴耀, 孙瑞莹, 王保丽, 张广智. 基于地质统计先验信息的储层物性参数同步反演[J]. 应用地球物理, 2014, 11(3): 311-320.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司