APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (2): 185-192    DOI: 10.1007/s11770-010-0243-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
复杂构造地震波场分析
周辉,王尚旭,李国发,沈金松
油气资源与探测国家重点实验室;CNPC物探重点实验室;中国石油大学(北京),北京 102249
Analysis of complicated structure seismic wave fields
Zhou Hui1, Wang Shang-Xu1, Li Guo-Fa1, and Shen Jin-Song1

1. State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Lab of Geophysical Exploration, China University of Petroleum (Beijing), Beijing 102249, China.

 全文: PDF (3022 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在我国的西部地区,地震波场十分复杂,信噪比低。本文采用波动方程正演模拟的方法研究复杂波场的形成原因。在模拟物性差异较大介质中的地震波场时,密度的影响不可忽略,因此,本文用含密度项的声波方程的交错网格有限差分法模拟地震波场并进行分析。设计了一个具有起伏地表、低速覆盖层和高速地层出露的复杂构造,从瞬时波场分布分析了形成复杂波场的原因。低速层对地震波场的影响明显,低速层中产生很强的波导,低速层顶底形成的多次反射向地下传播又形成了复杂的反射波场。为了验证波场模拟结果的可靠性,对模拟波场用与正演模拟不同的算法进行叠前深度偏移,得到了与已知构造相同的偏移叠加剖面。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周辉
王尚旭
李国发
沈金松
关键词波动方程   正演模拟   PML吸收边界   复杂构造   波导     
Abstract: In western China seismic wave fields are very complicated and have low signal to noise ratio. In this paper, we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different. We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields. For this purpose a complicated geologic structural model with rugged surfaces, near-surface low-velocity layers, and high-velocity outcropping layers was designed. Based on the instantaneous wave field distribution, we analyzed the mechanism forming complex wave fields. The influence of low velocity layers on the wave field is very strong. A strong waveguide occurs between the top and base of a low velocity layer, producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces. For verifying the correctness of the simulated wave fields, prestack depth migration was performed using different algorithms from the forward modeling. The structure revealed by the stacked migration profile is same as the known structure.
Key wordsWave equation   simulation   complex geological structure   wave field analysis   guided wave   
收稿日期: 2009-12-31;
基金资助:

本研究由国家自然科学基金(40974069)、中国石油科技创新基金(2009D-5006-03-01)、国家重点基础研究发展计划973(2007CB209601)和国家重大专项的资助(2008ZX05010-002, 2008ZX05024-001)资助。

引用本文:   
周辉,王尚旭,李国发等. 复杂构造地震波场分析[J]. 应用地球物理, 2010, 7(2): 185-192.
ZHOU Hui,WANG Shang-Xu,LI Guo-Fa et al. Analysis of complicated structure seismic wave fields[J]. APPLIED GEOPHYSICS, 2010, 7(2): 185-192.
 
[1] Baysal, E., and Kosloff, D. D., 1984, A two-way nonreflecting wave equation: Geophysics, 49(2), 132 - 141.
[2] Berenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: J. Comput. Phys., 114, 185 - 200.
[3] Chang, W. F., and McMechan, G. A., 1986, Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition: Geophysics, 51(1), 67 - 84.
[4] Chen, X. H., and Mou, Y. G., 1996, Two dimensional nonlinear wave equation inversion of seismic data: Chinese J. Geophys. (in Chinese), 39(3), 401-408.
[5] Cheng, B. J., Li, X. F., and Long, G. H., 2008, Seismic waves modeling by convolutional Forsythe polynomial differentiator method: Chinese J. Geophys. (in Chinese), 51(2), 531 - 537.
[6] Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bull. Seis. Soc. Am., 67(6), 1529 - 540.
[7] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294 - 307.
[8] Fu, C. M., Di, Q. Y., and Wang, M. Y., 2009, 3D numeric simulation of marine controlled source electromagnetics (MCSEM): Oil Geophysical Prospecting, 44(3), 358 - 363.
[9] Fu, H. S., and Han, B. A., 2005, Regularization homotopy method for the inverse problem of 2-D wave equation and well log constraint inversion: Chinese J. Geophys. (in Chinese), 48(6), 1441 - 1448.
[10] Higdon, R. L., 1991, Absorbing boundary conditions for elastic waves: Geophysics, 56(2), 231 - 241.
[11] Hong, T. K., and Kennett, B. L. N., 2004, Scattering of elastic waves in media with a random distribution of fluid-filled cavities: Theory and numerical modeling: Geophys. J. Int., 159, 961 - 977.
[12] Kosloff, R., and Kosloff, D., 1986, Absorbing boundaries for wave propagation problems: J. Comput. Phys., 63, 363 - 376.
[13] Liao, Z. P., Wong, H. L., Yang, B. P., and Yuan, Y. F., 1984, A transmitting boundary for transient wave analyses: Scientia Sinica, Series A, 27(10), 1063 - 1076.
[14] Mu, Y. G., and Pei, Z. L., 2005, Seismic numerical modeling for 3-D complex media: China Petroleum Industry Press.
[15] Muijs, R., Robertsson, J. O. A., and Holliger, K., 2007, Prestack depth migration of primary and surface-related multiple reflections: Part I-imaging: Geophysics, 72(2), S59 - S69.
[16] Qiu, D. L., Zhou, H., Takenaka, T., and Tanaka, T., 2006, Source group method to speed up the reconstruction of objects from radar data by using the FBTS method: Microwave and Optical Technology Letters, 48(1), 67 - 71.
[17] Reynolds, A. C., 1978, Boundary conditions for the numerical solution of wave propagation problems: Geophysics, 43(6), 895 - 904.
[18] Sochaki, J., Kubichek, R., George, J., Fletcher, W. R., and Smithson, S., 1987, Absorbing boundary conditions and surface waves. Geophysics, 52(1), 60 - 70.
[19] Song, R., Ma, J., and Wang, K., 2005, The application of the nonsplitting perfectly matched layer in numerical modeling of wave propagation in poroelastic media: Applied Geophysics, 2(4), 216 - 222.
[20] Uno, T., 1998, Finite difference time domain method for electromagnetic field and antennas: Corona Publishing Co., LTD., Tokyo.
[21] Wang, X., and Liu, X., 2007, 3-D acoustic wave equation forward modeling with topography: Applied Geophysics, 4(1), 8 - 15.
[22] Wang, Z. L., Zhou, H., and Li, G. F., 2007, Inversion of ground penetrating radar data for 2D electric parameters: Chinese J. Geophys. (in Chinese), 50(3), 897 - 904.
[23] Zhou, H., and He, Q. D., 1995, Nonlinear waveform inversion in anisotropic medium: Oil Geophysical Prospecting (in Chinese), 30(6), 725 - 735.
[24] Zhou, H., Sato, M., Takenaka, T., and Li, G. F., 2007, Reconstruction from antenna-transformed radar data using a time-domain reconstruction method: IEEE Transactions on Geoscience and Remote Sensing, 45(3), 689 - 696.
[25] Zhou, H., Qiu, D. L., Shen, J. S., and Li, G. F., 2008, Three-dimensional reconstruction from time-domain electromagnetic waves: Progress In Electromagnetics Research M, 5, 137 - 152.
[1] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[2] 王兵,张阔,陶果,刘鹤,张晓亮. 基于混合PML的频域有限元声反射测井正演模拟[J]. 应用地球物理, 2018, 15(1): 35-45.
[3] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[4] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
[5] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[6] 朱超, 郭庆新, 宫清顺, 刘占国, 李森明, 黄革萍. 基于Xu-White模型的致密储层叠前正演模拟研究与应用[J]. 应用地球物理, 2015, 12(3): 421-431.
[7] 张军华, 张彬彬, 张在金, 梁鸿贤, 葛大明. 地震低频信息缺失特征分析及拓频方法研究[J]. 应用地球物理, 2015, 12(2): 212-220.
[8] 杨佳佳, 何兵寿, 张建中. 海底天然气水合物OBS多分量地震正演模拟[J]. 应用地球物理, 2014, 11(4): 418-428.
[9] 吴满生, 狄帮让, 魏建新, 梁向豪, 周翼, 刘依谋, 孔昭举. 大型复杂构造地震物理模型设计制作及实验精度分析[J]. 应用地球物理, 2014, 11(2): 245-251.
[10] 赵虎, 尹成, 侯朋军, 蒲龙川, 黄勇, 苑国辉. 一种针对目的层均匀成像的自动加密炮点方法[J]. 应用地球物理, 2013, 10(2): 222-228.
[11] 段玉婷, 胡天跃, 姚逢昌, 张研. 基于精细积分法的三维弹性波数值模拟[J]. 应用地球物理, 2013, 10(1): 71-78.
[12] 张生强, 韩立国, 刘春成, 张益明, 巩向博. 基于小生境遗传算法的双相裂隙介质储层参数反演[J]. 应用地球物理, 2012, 9(4): 440-450.
[13] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
[14] 宋建勇, 郑晓东, 张研, 徐基祥, 秦臻, 宋雪娟. 基于静主元消元法的频率域波动方程正演[J]. 应用地球物理, 2011, 8(1): 60-68.
[15] 王祥春, 夏常亮, 刘学伟. 消除海底起伏影响的海洋地震波场正反向延拓[J]. 应用地球物理, 2010, 7(2): 149-157.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司