APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (2): 174-184    DOI: 10.1007/s11770-010-0242-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
用于弹性波模拟的交错网格预处理和多次校正的Chebyshev谱元法
车承轩,王秀明,林伟军
中国科学院声学研究所,声场声信息国家重点实验室,北京 100190
The Chebyshev spectral element method using staggered predictor and corrector for elastic wave simulations
Che Cheng-Xuan1, Wang Xiu-Ming1, and Lin Wei-Jun1
1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China.
 全文: PDF (2448 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文基于弹性波动方程,从其弱形式出发,利用Galerkin变分原理,通过对方程进行空间和时间上的离散,在空间域中引入预条件共轭梯度的逐元算法,在时间域中引入时间积分的交错网格预处理/多次校正算法,发展了弹性波模拟的Chebyshev谱元算法。针对均匀固体介质和具有倾斜分层的分区均匀固体介质模型,通过与有限差分算法结果相比较验证其精度的可信性,同时利用该算法模拟了弹性波在具有水平分层的任意起伏自由表面模型中的传播,并分析了其传播特点。研究表明,我们提出的交错网格预处理/多次校正算法的Chebyshev谱元算法,保留了有限元法的优势,并且采用了具有最优张量乘积技术的元到元的算法,能够处理带有起伏自由表面的复杂介质模型,它具有比有限元法收敛快,计算效率较高等优点,特别适合于复杂结构和复杂介质中的弹性波传播的数值模拟。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
车承轩
王秀明
林伟军
关键词Chebyshev谱元   元到元   预处理/多次校正算法     
Abstract: Based on strong and weak forms of elastic wave equations, a Chebyshev spectral element method (SEM) using the Galerkin variational principle is developed by discretizing the wave equation in the spatial and time domains and introducing the preconditioned conjugate gradient (PCG)-element by element (EBE) method in the spatial domain and the staggered predictor/corrector method in the time domain. The accuracy of our proposed method is verified by comparing it with a finite-difference method (FDM) for a homogeneous solid medium and a double layered solid medium with an inclined interface. The modeling results using the two methods are in good agreement with each other. Meanwhile, to show the algorithm capability, the suggested method is used to simulate the wave propagation in a layered medium with a topographic traction free surface. By introducing the EBE algorithm with an optimized tensor product technique, the proposed SEM is especially suitable for numerical simulation of wave propagations in complex models with irregularly free surfaces at a fast convergence rate, while keeping the advantage of the finite element method.
Key words:   
收稿日期: 2009-11-24;
基金资助:

本研究由国家自然科学基金(40774099,10874202)和国家高技术研究发展计划(2008AA06Z205)资助。

引用本文:   
车承轩,王秀明,林伟军. 用于弹性波模拟的交错网格预处理和多次校正的Chebyshev谱元法[J]. 应用地球物理, 2010, 7(2): 174-184.
CHE Cheng-Xuan,WANG Xiu-Ming,LIN Wei-Jun. The Chebyshev spectral element method using staggered predictor and corrector for elastic wave simulations[J]. APPLIED GEOPHYSICS, 2010, 7(2): 174-184.
 
[1] Alford, R. M., Kelly, K. R., and Boore, D. M., 1974, Accuracy of finite difference modeling of the acoustic wave equation: Geophysics, 39(6), 834 - 842.
[2] Alterman, Z. S., and Loewenthal, D., 1970, Seismic waves in a quarter and three-quarter plane: Geophys. J. Roy. Astr. Soc., 20(2), 101 - 126.
[3] Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., 1988, Spectral methods in fluid dynamics: Springer-Verlag, 65 - 75.
[4] Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A non-reflecting boundary condition for discrete acoustic and elastic wave equations: Geophysics, 50(4), 705 - 708.
[5] Deng, S. Z., Zhou, S. Q., and Zeng, L., 1995, Application of EBE strategy in structural analysis (I)-EBE computational method for matrix-vector multiply and its parallel/vector implementations: Journal of Astronautics, 16(2), 13-19.
[6] Gazdag, J., 1981, Modeling of the acoustic wave equation with transform method: Geophysics, 46(6), 854 - 859.
[7] Hilber, H. M., Hughes, T. J. R., and Taylor, R. L., 1977, Improved numerical dissipation for time integration algorithms in structural dynamics: Earthquake Engineering and Structural Dynamics, 5, 283 - 292.
[8] Hughes, T. J. R., 1987, The finite element method-Linear static and dynamic finite element analysis: Prentice-Hall, Inc, Englewood Cliffs, New Jersey.
[9] Hughes, T. J. R., Levit, I., and Winget, J., 1983a, Element-by-element implicit algorithms for heat conduction: Journal of Engineering Mechanics, 109(2), 576 - 585.
[10] Hughes, T. J. R., Levit, I., and Winget, J., 1983b, An element-by-element solution algorithm for problems of structural and solid mechanics: Computer Methods in Applied Mechanics and Engineering, 36(2), 241 - 254.
[11] Komatitsch, D., and Barnes, C., 2002, Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation: Geophys. J. Int., 150, 303 - 318.
[12] Komatitsch, D., Barnes, C., and Tromp. J., 2000a, Wave propagation near a fluid-solid interface: A spectral-element approach: Geophysics, 65(2), 623 - 631.
[13] Komatitsch, D., Barnes, C., and Tromp. J., 2000b, Simulation of isotropic wave propagation based upon a spectral element method: Geophysics, 65(4), 1251 - 1260.
[14] Komatitsch, D., Barnes, C., and Tromp. J., 2002, Spectral-element simulations of global seismic wave propagation-I. Validation: Geophys. J. Int., 149, 390 - 412.
[15] Komatitsch, D., and Vilotte, J. P., 1998, The spectral element method: an efficient tool to simulate the seismic response of 2-D and 3-D geological structures: Bull. Seis. Soc. Am., 88(2), 368 - 392.
[16] Komatitsch, D., Vilotte, J. P., Vai, R., Castillo-Covarrubias,J. M., and Sanchez-Sesma,F. J., 1999, The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems: Int. J. Meth. Eng., 45, 1139 - 1164.
[17] Kosloff, D., and Baysal, E., 1982, Forward modeling by a Fourier method: Geophysics, 47(10), 1402 - 1412.
[18] Kosloff, D., Kessler, D., Filho, A. Q., Behle, A., and Strabilevitz, R., 1990, Solution of the equations of dynamic elasticity by a Chebyshev spectral method: Geophysics, 55(6), 734 - 748.
[19] Lin, W. J., Wang, X. M., and Zhang, H. L., 2006, An element by element spectral element method for elastic wave modeling: Progress in Natural Science, 16(1), 21 - 29.
[20] Patera, A. T., 1984, A spectral element method for fluid dynamics: laminar flow in a channel expansion: Journal of Computational Physics, 54(3), 468 - 488.
[21] Seriani, G., 1997, A parallel spectral element method for acoustic wave modeling: J. Computation Acoustics, 5(1), 53 - 69.
[22] Seriani, G., 1998, 3-D large-scale wave propagation modeling by spectral element method on Cray T3E: Comp. Meth. Appl. Mech. and Eng., 164, 235 - 247.
[23] Seriani, G., and Priolo, E., 1994, Spectral element method for acoustic wave simulation in heterogeneous media: Finite element in analysis and design, 16, 337 - 348.
[24] Seriani, G., Priolo, E., Carcione, J. M., and Padovani, E., 1992, High-order spectral element method for elastic wave modeling: 62th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1285 - 1288.
[25] Wang, X. M., 2001, Seismic wave simulation in anisotropic media with heterogeneity using high-order finite-difference method: In Proceedings of the 5th SEGJ International Symposium: Imaging Technology, Tokyo, Japan, 113 - 120.
[26] Wang, X. M., Dodds, K., and Zhao, H. B., 2006, An improved high-order rotated staggered finite-difference algorithm for simulating elastic waves in heterogeneous viscoelastic/anisotropic media: Exploration Geophysics, 37(2), 160 - 174.
[27] Wang, X. M., Seriani, G., and Lin, W. J., 2007, Some theoretical aspects of elastic wave modeling with a recently developed spectral element method: Science in China (Series G), 50 (2), 185 - 207.
[28] Wang, X. M., and Zhang, H. L., 2004, Modeling of elastic wave propagation on a curved free surface using an improved finite-difference algorithm: Science in China (Series G), 47(5), 633 - 648.
[29] Winget, J., and Hughes, T. J. R., 1985, Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies: Computer Methods in Applied Mechanics and Engineering, 52, 711 - 815.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司