APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (2): 127-134    DOI: 10.1007/s11770-010-0236-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于群体搜索的串行蒙特卡罗反演方法的并行算法
魏超1,李小凡2,郑晓东1
1. 中国石油勘探开发研究院,北京 100083
2. 中国科学院地质与地球物理研究所,北京 100029
The group search-based parallel algorithm for the serial Monte Carlo inversion method
Wei Chao1, Li Xiao-Fan2, and Zheng Xiao-Dong1
1. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, 100083.
2. Institute of Geology and Geophysics, CAS, Beijing, 100029.
 全文: PDF (1377 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 随着并行计算技术的发展,非线性反演计算效率在不断提高,但对于基于单点搜索的非线性反演方法,其并行算法的实现则是一个难题。本文将群体搜索的思想引入到基于单点搜索的非线性反演方法,构建了并行算法,以量子蒙特卡罗方法为例进行了二维地震波速度反演及实际资料波阻抗反演,并测试了使用不同节点数进行计算的效率。计算结果表明:该并行算法在理论和实际资料反演中是可行的和有效的,具有很好的通用性;算法计算效率随着使用节点数的增加而提高,但算法计算效率的提高幅度随着使用节点数的增加逐渐减小。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏超
李小凡
郑晓东
关键词非线性反演   单点搜索   群体搜索   并行计算     
Abstract: With the development of parallel computing technology, non-linear inversion calculation efficiency has been improving. However, for single-point search-based non-linear inversion methods, the implementation of parallel algorithms is a difficult issue. We introduce the idea of group search to the single-point search-based non-linear inversion algorithm, taking the quantum Monte Carlo method as an example for two-dimensional seismic wave velocity inversion and practical impedance inversion and test the calculation efficiency of using different node numbers. The results show the parallel algorithm in theoretical and practical data inversion is feasible and effective. The parallel algorithm has good versatility. The algorithm efficiency increases with increasing node numbers but the algorithm efficiency rate of increase gradually decreases as the node numbers increase.
Key wordsnon-linear inversion   single-point search   group search   parallel computation   
收稿日期: 2009-12-23;
基金资助:

本研究由国家重大专项项目(2008ZX05000-004)和中国石油天然气股份有限公司重大专项项目(2008E-0610-10)资助。

引用本文:   
魏超,李小凡,郑晓东. 基于群体搜索的串行蒙特卡罗反演方法的并行算法[J]. 应用地球物理, 2010, 7(2): 127-134.
WEI Chao,LI Xiao-Fan,ZHENG Xiao-Dong. The group search-based parallel algorithm for the serial Monte Carlo inversion method[J]. APPLIED GEOPHYSICS, 2010, 7(2): 127-134.
 
[1] Aarts, E. H. L., de Bont, F. M. J., Habers, E. H. A., and van Laarhoven, P. J. M., 1986, Parallel implementations of the statistical cooling algorithm: Integration, the VLSI Journal, 4(3), 209 - 238.
[2] Backus, G. E., and Gilbert, J. F., 1967, Numerical application of a formulism for geophysical inversion: Geophysical Journal of the Royal Astronomical Society, 13(1 - 3), 247 - 276.
[3] ———1968, The resolving power of gross earth data: Geophysical Journal of the Royal Astronomical Society, 16(2), 169 - 205.
[4] ———1970, Uniqueness in the inversion of inaccurate gross earth data: Mathematical and Physical Sciences, 266, 123 - 192.
[5] Ceperley, D. M., and Alder, B. J., 1986, Quantum Monte Carlo: Science, 231(4738), 555 - 560.
[6] Chen, H., Flann, N. S., and Watson, D. W, 1998, Parallel genetic simulated annealing: A massively parallel SIMD algorithm: IEEE Transactions on Parallel and Distributed Systems, 9(2), 126 - 136.
[7] Choi, C., and Lee, J., 1998, Chaotic local search algorithm: Artificial Life and Robotics, 2(1), 41 - 47.
[8] Teng, C. X., and Li, Z. H., 2002, Theory and application of bi-level programming: Science Press, Beijing, 84 - 92.
[9] Donsker, M. D., and Kac, M., 1950, A sampling method for determining the lowest eigenvalue and the principal eigenfunction of the Schrödinger equation: Journal of Research of the National Bureau of Standards, 44(50), 551 - 557.
[10] Esin, O., and Liner, O., 2001, Parallel simulated annealing algorithm in global optimization: Journal of Global Optimization, 19(1), 27 - 50.
[11] Hammersley, J. M., and Handscomb, D. C., 1964, Monte Carlo methods: Chapman and Hall, London and New York.
[12] Huang, L., and Li, C. H., 2003, Simulated annealing and parallel realization: Application on VLSI block placement: Journal of Xiamen University (Natural Science), 42(1), 21 - 28.
[13] Ingber, L., 1992, Genetic algorithms and very fast simulated reannealing: a comparison: Math Computer Modeling, 16(3), 87 - 100.
[14] Janakipam, D., Sreenivas, T. H., and Subramaniam, K. G., 1996, Parallel simulated annealing algorithms: Journal of Parallel and Distributed Computing, 37(2), 207 - 212.
[15] Lee, S. Y., and Lee, K. G., 1992, Asynchronous communication of multiple Markov chains in parallel simulated annealing: Proceedings of the International Conference on Parallel Processing, 169 - l76.
[16] Li, B., and Jiang, W. S., 1997, Chaos optimization algorithm and its application: Control Theory and Applications, 14(4), 613 - 615.
[17] Li, S. Y., Du, Z. H., and Wu, M. Y., 2001, Parallel realization of simulated annealing algorithm: Modifications and applications: Acta Physica Sinica, 50(7), 1260 - 1263.
[18] Luo, Y. Z., and Tang, G. J., 2005, Global optimization of bilevel nonlinear programming problems by parallel simulated annealing: Acta Simulata Systematica Sinica, 17(5), 1040 - 1044.
[19] Mahfoud, S. W., and Goldberg, D. E., 1992, Parallel recombinative simulated annealing: A genetic algorithm: Illigal report 92002, University of Illinois, Urbana, IL 61801 - 2996.
[20] Ming, T. F., Zhang, Y. X., and Piao, J. Z., 2003, Application of parallel recombination simulated annealing algorithms in fault identification: China Mechanical Engineering, 14(17), 1496 - 1498.
[21] Onba?o?lu, E., and Özdamar, L., 2001, Parallel simulated annealing: Algorithms in global optimization: Journal of Global Optimization, 19(1), 27 - 50.
[22] Press, W. H., Teukolsky, S. A., Vetterling, W. T., 2002, Numerical recipes in C++: The art of scientific computing: Cambridge University Press, 448 - 459.
[23] Rothman, D. H., 1985, Nonlinear inversion statistical mechanics and residual statics correction: Geophysics, 50(12), 2784 - 2796.
[24] ———1986, Automatic estimation of large residual statics corrections: Geophysics, 51(2), 332 - 346.
[25] Sambridge, M. S., 1999a, Geophysical inversion with a neighborhood algorithm - Ι: Searching a parameter space: Geophysics Journal International, 138(2), 479-494.
[26] ———1999b, Geophysical inversion with a neighborhood algorithm - II: Appraising the ensemble: Geophysics Journal International, 138(2), 727 - 746.
[27] Shu, W. N., and Zheng, S. J., 2006, A parallel genetic simulated annealing hybrid algorithm for task scheduling: Wuhan University Journal of Natural Sciences, 11(5), 1378 - 1382.
[28] Sun, X. P., and Zhang, S. H., 2004, The overall optimization algorithm based on parallel recombination simulated annealing: Journal of Xi an University of Technology, 20(4), 396 - 399.
[29] Szu, H., and Hartly, R., 1987, Fast simulated annealing: Physics Letters A, 122(3), 157 - 162.
[30] Tang, L. S., Xie, Y., and You, S. Y., 1994, Non-numerical parallel algorithms-simulated annealing method: Science Press, Beijing.
[31] Wang, H., and Tang, G. J., 2005, An asynchronous parallel simulated annealing algorithm for function optimization problems: Control and Decision, 20(5), 579 - 582.
[32] Wei, C., Li, X. F., and Zhang, M. G., 2008, Geophysical inverse method based on quantum Monte Carlo: Chinese Journal of Geophysics, 51(5), 1494 - 1502.
[33] Wen, P. C., Xu, X. D., and He, X. G., 2003, Parallel genetic algorithm/simulated annealing hybrid algorithm and its applications: Computer Science, 30(3), 86 - 89.
[34] Xi, Q. Y., Xie, X. P., and Huang, Q., 2006, Study on flood zoom model based on genetic algorithm and parallel recombination simulated annealing algorithm: Journal of Hydroelectric Engineering, 25(1), 108 - 113.
[1] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[2] 刘云鹤,殷长春,任秀艳,邱长凯. 时间域航空电磁三维并行反演研究[J]. 应用地球物理, 2016, 13(4): 701-711.
[3] 江沸菠,戴前伟,董莉. 基于剪枝贝叶斯神经网络的电阻率成像非线性反演[J]. 应用地球物理, 2016, 13(2): 267-278.
[4] 张志勇, 谭捍东, 王堃鹏, 林昌洪, 张斌, 谢茂笔. 复电阻率法二维数据空间反演并行算法研究[J]. 应用地球物理, 2016, 13(1): 13-24.
[5] 周腾飞, 彭更新, 胡天跃, 段文胜, 姚逢昌, 刘依谋. 基于萤火虫算法的瑞利波非线性反演[J]. 应用地球物理, 2014, 11(2): 167-178.
[6] 赵太银, 胡光岷, 贺振华, 黄德济. 二阶精度广义非线性全局最优的偏移速度反演方法[J]. 应用地球物理, 2009, 6(2): 138-149.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司