APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (2): 105-113    DOI: 10.1007/s11770-010-0234-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
水库冰气泡含量和密度对探地雷达测厚的影响分析
李志军1,贾青1,张宝森2,Leppäranta Matti3,卢鹏1,黄文峰1
1. 大连理工大学海岸和近海工程国家重点实验室,辽宁大连 116024
2. 黄河水利科学研究院,河南郑州 450003
3. Department of Physics, Helsinki University, Helsinki FN-1514002, Finland
Influences of gas bubble and ice density on ice thickness measurement by GPR
Li Zhi-Jun1, Jia Qing1, Zhang Bao-Sen2, Leppäranta Matti3, Lu Peng1, and Huang Wen-Feng1
1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024.
2. Yellow River Institute of Hydraulic Research, Zhengzhou, 450003.
3. Department of Physics, University of Helsinki, Helsinki FIN-00014, Finland.
 全文: PDF (1384 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在水库现场试验了RIS K2型探地雷达探测水库冰厚度的能力,试验时所用天线频率为600MHz;同步钻孔测量雷达探测处的冰厚度;以及在一个点上取样测试分析冰晶体、冰内气泡和冰密度。试验时冰面积雪厚度0.03-0.05m,冰层上部有0.24m粒状冰,其下均为柱状冰;冰内气泡含量呈表层高底层低分布;冰密度随气泡含量变化;冰厚度在平面内不均一。通过探测厚度和实测厚度的对比分析以及气泡含量对介电系数影响的理论分析,建立了积雪、粒状冰和柱状冰三层介质模型,获取雷达波在冰内的理论传递时间。结果发现:能够利用等效介电常数或等效传播速度评价雷达波传递时间,结冰期冰层1/3深度处的对应介电常数或传递速度可以作为等效值;另外因冰内大气泡造成的理论传递时间大于雷达探测时间,其差值随理论传递时间或冰厚的增加呈非线性增加。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志军
贾青
张宝森
Lepp?ranta Matti
卢鹏
黄文峰
关键词雷达   水库冰   厚度   探测   误差     
Abstract: Lake ice thickness changes with regional hydrometeorology and is closely associated with global climate change. We tested the detection of ice thickness using ground penetrating radar (GPR) in the Hongqipao reservoir. Ice crystals, gas bub bles, ice density and ice thickness were also determined by concurrently drilling for validation. During the tests the gas bubble content was high in the upper and low in the bottom, ice density varied with the bubble content, and the ice thickness was not homogeneous. By comparisons between radar detected and in-situ measured ice thicknesses with theoretical analyses of the influence of gas bubble content on the dielectric constant, a three-layer model with snow, granular ice, and columnar ice was established and the transmission speed of radar wave within the ice was determined. Experience reveals that the equivalent dielectric constant can be used to evaluate the wave speed and the values at 1/3 ice cover depth can be used as equivalent values. Besides, the difference between the theoretical transmission time and the real detection time induced by large gas bubbles increases nonlinearly with the theoretical transmission time or ice thickness.
Key wordsRadar   reservoir ice   thickness   detection   error   
收稿日期: 2010-03-29;
基金资助:

本研究由国家自然科学基金(50879008, 40930848)、冻土工程国家重点实验室开放基金(SKLFSE200904)和Vilho, Yrjö and Kalle Väisälä fund of the Finnish Academy of Sciences and Letters资助。

引用本文:   
李志军,贾青,张宝森等. 水库冰气泡含量和密度对探地雷达测厚的影响分析[J]. 应用地球物理, 2010, 7(2): 105-113.
LI Zhi-Jun,JIA Qing,ZHANG Bao-Sen et al. Influences of gas bubble and ice density on ice thickness measurement by GPR[J]. APPLIED GEOPHYSICS, 2010, 7(2): 105-113.
 
[1] Assel, R., Cronk, K., and Norton, D., 2003, Recent trends in Laurentian Great Lakes ice cover: Climatic Change, 57, 185 - 204.
[2] Cooper, D. W., Mueller, R. A., and Schertler, R. J., 1976, Remote profiling of lake ice using an S-band short-pulse radar aboard an all-terrain vehicle: Radio Science, 11, 375 - 381.
[3] Cui, X. B., Sun, B., Tian, G., Tang, X. Y., Zhang, X. P., Jiang, Y. Y., Guo, J. X., and Li , X., 2010, Ice radar investigation at Dome A, East Antarctic: Ice thickness and subglacial topography: Chinese Science Bulletin, 55(4 - 5),425 - 431.
[4] Evans, S., 1965, The dielectric properties of ice and snow: A review: Journal of Glaciology, 5, 773 - 792.
[5] Galley, R. J., Trachtenberg, M., Langlois, A., Barber, D. G., and Shafai, L., 2009, Observations of geophysical and dielectric properties and ground penetrating radar signatures for discrimination of snow, sea ice, and freshwater ice thickness: Cold Regions Science and Technology, 57, 29 - 38.
[6] Gherboudj, I., Bernier, M., Hicks, F., and Leconte, R., 2007, Physical characterization of air inclusions in river ice: Cold Regions Science and Technology, 49, 179 - 194.
[7] Holt, B., Kanagaratnam, P., Gogineni, S. P., Ramasami, V. C., Mahoney, A., and Lytle, V., 2009, Sea ice thickness measurements by ultrawideband penetrating radar: First results: Cold Regions Science and Technology, 55, 33 - 46.
[8] Li, Z., Guo, H. D., and Shi, J. C., 2001, Retrieving dry snow density with SIR-C polarimetric SAR data: Chinese Science Bulletin, 46(1), 1211 - 1214.
[9] Li, Z. J., and Wang, G. Z., 2009, Potential ice science research problems in the 21st Century: In Dai, C. L., Ed., Research on water science in frigid zones and international rivers 2, Research on hydrologic cycle and ice engineering in the frigid zone: China Water Power Press, 3 - 8.
[10] Li, Z. J., Jia, Q., Huang, W. F., and Li, C. Y., 2009, Characteristics of ice crystal air bubbles and densities of fresh ice in a reservoir: Journal of Hydraulic Engineering (in Chinese), 40(11), 1333 - 1338.
[11] Looyenga, H., 1965, Dielectric constant of heterogeneous mixtures: Physica, 21, 401 - 406.
[12] Scaron;arauskien?, D., and Jurgel?nait?, A., 2008, Impact of climate change on river ice phenology in Lithuania: Environmental Research, Engineering, and Management, 46(4), 13 - 22.
[13] Shokr, M. E., 1998, Field observations and model calculations of dielectric properties of Arctic sea ice in the microwave C-band: IEEE Transactions on Geoscience and Remote Sensing, 36(2), 463 - 478.
[14] Sun, B., Martin, J. S., Simon, M. M., David, S., Shuji, F., Cui, X. B., Jiang, Y. Y., Tang, X. Y., and Li, Y. S., 2009, The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet: Nature, 459, 690 - 693.
[15] Wang, B. B., Tian, G., Sun, B., Guo, J. X.., and Zhang, X. P., 2006, An analysis of the multi-fold method for GPR exploration: Applied Geophysics, 3(3), 187 - 191.
[16] Wang, B. B., Tian, G., Cui, X. B., and Zhang, X. P., 2008, The internal COF features in Dome A of Antarctica revealed by multi-polarization-plane RES: Applied Geophysics, 5(3), 230 - 237.
[17] Wang, N. L., and Pu, J. C., 2009, Ice thickness sounded by ground penetrating radar on the Bayi Glacier in the Qilian Mountains, China: Journal of Glaciology and Geocryology (in Chinese), 31(3), 431 - 435.
[18] Welch, B. C., Jacobel, R. W., and Arcone, S. A., 2009, First results from radar profiles collected along the US-ITASE traverse from Taylor Dome to South Pole (2006-2008): Annals of Glaciology, 50(51), 35 - 41.
[1] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[2] 张阔,吴锡令,闫景富,蔡家铁. 水平井两相流动电磁全息测量敏感场[J]. 应用地球物理, 2017, 14(1): 40-48.
[3] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[4] 闫述,薛国强,邱卫忠,李海,钟华森. 中心回线TEM法探测多层积水采空区的可行性[J]. 应用地球物理, 2016, 13(4): 587-597.
[5] 唐学远,郭井学,孙波,王甜甜,崔祥斌. 东南极冰盖伊丽莎白公主地中国泰山站站址所在区域的冰厚、内部等时层、地表和冰下地形[J]. 应用地球物理, 2016, 13(1): 203-208.
[6] 崔祥斌,孙波,苏小岗,郭井学. 东南极昆仑站周边沿“中国墙”的冰厚和冰下地形分布[J]. 应用地球物理, 2016, 13(1): 209-216.
[7] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[8] 曾昭发, 陈雄, 李静, 陈玲娜, 鹿琪, 刘凤山. 随机等效介质探地雷达参数递推阻抗反演研究[J]. 应用地球物理, 2015, 12(4): 615-625.
[9] 叶益信, 李予国, 邓居智, 李泽林. 激发极化法2.5维自适应有限元正演模拟[J]. 应用地球物理, 2014, 11(4): 500-507.
[10] 曹云梦, 李志伟, 韦建超, 占文俊, 朱建军, 汪长城. 一种求解地球物理参数各向异性的新方法——单位步长变异增量法[J]. 应用地球物理, 2014, 11(3): 340-349.
[11] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
[12] 李雄炎, 秦瑞宝, 刘春成, 毛志强. 基于岩石导电效率建立碳酸盐岩储层饱和度的计算方法[J]. 应用地球物理, 2014, 11(2): 215-222.
[13] 李术才, 聂利超, 刘斌, 宋杰, 刘征宇, 苏茂鑫, 徐磊, 孙怀凤. 基于空间形态先验约束的三维电阻率反演成像方法[J]. 应用地球物理, 2013, 10(4): 361-372.
[14] 赵文轲, 田钢, 王帮兵, 石战结, 林金鑫. 探地雷达三维属性技术在考古调查中的应用研究[J]. 应用地球物理, 2012, 9(3): 261-269.
[15] 陈向斌, 吕庆田, 严加永. 斑岩铜矿床及控矿构造的3D电性结构——以沙溪铜矿为例[J]. 应用地球物理, 2012, 9(3): 270-278.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司