APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (4): 483-493    DOI: 10.1007/s11770-012-0360-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
基于GPS单历元精密单点定位的2011东日本大地震形变特征研究
郭金运1,2,原永东1,孔巧丽1,2,李国伟1,王方建3
1. 山东科技大学 测绘学院,青岛 266590
2. 海岛(礁)测绘技术国家测绘地理信息局重点实验室,青岛 266590
3. 山东省地震局,济南 250014
Deformation caused by the 2011 eastern Japan great earthquake monitored using the GPS single-epoch precise point positioning technique
Guo Jin-Yun1,2, Yuan Yong-Dong1, Kong Qiao-Li1,2, Li Guo-Wei1, and Wang Fang-Jian3
1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China.
2. Key Laboratory of Surveying and Mapping on Island and Reef of NASMG, Qingdao 266590, China.
3. Earthquake Administration of Shandong Province, Jinan 250014, China.
 全文: PDF (925 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地壳形变信息为Mw9.0东日本大地震研究提供了地震破裂和地震波传播等研究的强制性约束。本文采用GPS单历元精密单点定位(PPP)技术,给出了单历元PPP的定位流程,对日本的6个(International GNSS Service)站(MIZU、TSK2、USUD、MTKA、AIRA、KSMV)的30s采样率观测数据进行了处理,获得了厘米级单历元定位精度。采用最小二乘谱分析方法,分析了6个IGS站的位移时间序列,解算了Mw9.0主震和Mw7.9余震造成的影响以及大地震当天的累计形变。距离震中最近的MIZU站在主震发生后在N(North)、E(East)和U(Up)方向上分别产生了-1.202m、2.180m和-0.104m位移,在N、E和U方向的单天累计形变量分别为-1.117m、2.071m和-0.072m。距离Mw7.9余震最近的KSMV站在N、E和U方向的单天累计形变量分别为-0.032m、0.742m和-0.345m。其他站点都有明显的向东运动和下沉。地震造成的地面位移都指向震中,并且台站位移存在明显的弹性回跳。这也说明日本岛弧东北部地区的地壳运动和地震活动是沉入北美板块之下的太平洋板块反作用造成的逆冲过程。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭金运
原永东
孔巧丽
李国伟
王方建
关键词东日本大地震   GPS   单历元精密单点定位   地壳形变     
Abstract: Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single-epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.
Key wordsEastern Japan great earthquake   GPS   single-epoch precise point positioning   crustal deformation   
收稿日期: 2012-08-24;
基金资助:

本研究由国家自然科学基金(40974004和40974016),海岛(礁)测绘技术国家测绘地理信息局重点实验室基金(2011A01),现代工程测量国家测绘地理信息局重点实验室基金(TJES1101)。

引用本文:   
郭金运,原永东,孔巧丽等. 基于GPS单历元精密单点定位的2011东日本大地震形变特征研究[J]. 应用地球物理, 2012, 9(4): 483-493.
GUO Jin-Yun,YUAN Yong-Dong,KONG Qiao-Li et al. Deformation caused by the 2011 eastern Japan great earthquake monitored using the GPS single-epoch precise point positioning technique[J]. APPLIED GEOPHYSICS, 2012, 9(4): 483-493.
 
[1] Ammon, C. J., Lay, T., Kanamori, H., and Cleveland, M., 2011, A rupture model of the 2011 off the Pacific coast of Tohoku earthquake: Earth Planets Space, 63, 693 - 696. doi:10.5047/eps.2011.05.015.
[2] Chio, K., Bilich, A., Larson, K. M., and Axelrad, P., 2004, Modified sidereal filtering: implications for high-rate GPS positioning: Geophysical Research Letters, 31, L22608. doi:10.1029/2004GL021621.
[3] DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S., 1990, Current plate motions: Geophys. J. Int., 101, 425 - 478. doi:10.1111/j.1365-246X.1990.tb06579.x.
[4] Diao, F. Q., Xiong, X., Ni, S. D., Zheng, Y., and Ge, C., 2011, Slip model for the 2011 Mw 9.0 Sendai (Japan) earthquake and its Mw 7.9 aftershock derived from GPS data: Chinese Science Bulletin, 56(27), 2941 - 2947. doi:10.1007/s11434-011-4643-4.
[5] Fang, R. X., 2010, High-rate GPS data non-difference precise processing and its application on seismology: PhD thesis, Wuhan University, Wuhan.
[6] Griffiths, J., and Ray, Jr., 2009, On the precision and accuracy of IGS orbits: Journal of Geodesy, 83, 277 - 287. doi:10.1007/s00190-008-0237-6.
[7] Gu, G. H., Wang, W. X., Meng, G. J., and Xu, Y. R., 2009, Crustal movements before and after the Wenchuan earthquake as detected by GPS observations: Geomatics and Information Science of Wuhan University, 34(11), 1336 - 1339.
[8] Guo, J. Y., Xu, P. L., and Qv, G. Q., 2003, A three-dimensional method for checking the antenna phase center bias of GPS receiver: Geomatics and Information Science of Wuhan University, 28(4), 448 - 451.
[9] Guo, J. Y., Han, Y. B., and Hwang, C. W., 2008, Analysis on motion of Earth’s center of mass observed with CHAMP mission: Science in China Series G: Physics, Mechanics & Astronomy, 51(10), 1597 - 1606. doi:10.1007/s11433-008-0152-0.
[10] Guo, J. Y., Han, Y. B., and Chang, X. T., 2009, A new method of ionospheric-free hybrid differential positioning based on a double-antenna CAPS receiver: Science in China Series G: Physics, Mechanics & Astronomy, 52(3), 368 - 375. doi:10.1007/s11433 -009-0054-9.
[11] Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 1998, GPS: theory and practice, 4th ed: Springer- Verlag, Vienna.
[12] Hopfield, H. S., 1969, Two-quartic tropospheric refractivity profile for correcting satellite data: Journal of Geophysical Research, 74(18), 4487 - 4499.
[13] Huang, L. R., Gao, Y. L., and Ren, L. S., 2006, On NEU (ENU) coordinate system: Journal of Geodesy and Geodynamics, 26(1), 97 - 99.
[14] Kouba, J., 2003, Measuring seismic waves induced by large earthquakes with GPS: Stud. Geophys. Geod., 47(4), 741 - 755. doi:10.1023/A:1026390618355.
[15] Larson, K. M., Bodin, P., and Gomberg, J., 2003, Using 1-Hz GPS data to measure deformations caused by the Denali Fault earthquake: Science, 300, 1421 - 1424. doi:10.1126/science.1084531.
[16] Leick, A., 2004, GPS satellite surveying, 3rd ed: John Wiley & Sons, Hoboken.
[17] Miyazaki, S., Larson, K. M., Choi, K., Hikima, K., Koketsu, K., Bodin, P., Haase, J., Emore, G., and Yamagiwa, A., 2004, Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data: Geophysical Research Letters, 31, L21603. doi:10.1029/2004GL021457.
[18] Meng, G. J., Ren, J. W., Jin, H. L., and Li, P., 2007, Data processing methods of high rate GPS and its application to seismology: Recent Developments in World Seismology, (7), 26 - 31.
[19] Norio, O., Ye, T., Kajitani, Y., Shi, P., and Tatano, H., 2011, The 2011 eastern Japan great earthquake disaster: overview and comments: Int. J. Disaster Risk Sci., 2(1), 34 - 42. doi:10.1007/s13753-011-0004-9.
[20] Ohta, Y., Meilano, I., Sagiya, T., Kimata, F., and Hirahara, K., 2006, Large surface wave of the 2004 Sumatra-Andaman earthquake captured by the very long baseline kinematic analysis of 1-Hz GPS data: Earth Planets Space, 58, 153 - 157.
[21] Pollitz, F. F., Bürgmann, R., and Banerjee, P., 2011, Geodetic slip model of the 2011 M9.0 Tohoku earthquake: Geophysical Research Letters, 38, L00G08. doi:10.1029/2011GL048632.
[22] Ray, R., 1999, A global ocean tide model from T/P altimetry: GOT99.2: NASA Technical Memorandum. NASA/TM-1999-209478, NASA, GSFC, Greenbelt.
[23] Saastamoinen, J., 1972, Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites: Henriksen, S. W., Mancini, A., and Chovitz, B. H., The Use of Artificial Satellites for Geodesy: Geophys. Monogr. Ser. AGU, 15, 247 - 251.
[24] Scawthorn, C., and Porter, A.K., 2011, Aspects of the 11 March 2011 eastern Japan earthquake and tsunami: SPA Risk.
[25] Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., Meng, L., Ampuero, J. P., Wei, S., Chu, R., Helmberger, D. V., Kanamori, H., Hetland, E., Moore, A. W., and Webb, F. H., 2011, The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries: Science, 332, 1421 - 1425. doi:10.1126/science.1206731.
[26] Wang, G. Q., Boore, D. M., Tang, G., and Zhou, X., 2007, Comparisons of ground motions from collocated and closely spaced one-sample-per-second Global Position System and accelerograph recordings of the 2003 M6.5 San Simeon, California earthquake in the Parkfield region: Bull. Seismol. Sco. Am., 97, 76 - 90.
[27] Vigny, C., Socquet, A., Peyrat, S., et al., 2011, The 2010 Mw 8.8 Maule Megathrust earthquake of central Chile, monitored by GPS: Science, 332, 1417 - 1421. doi:10.1126/science.1204132.
[28] Ye, S. R., 2002, Theory and its realization of GPS precise point positioning using un-differenced phase observation: PhD Thesis, Wuhan University, Wuhan.
[29] Yin, H. T., Zhang, P. Z., Gan, W. J., Wang, M., Liao, H., Li, X. J., Li, J., and Xiao, G. R., 2010, Near-field surface movement during the Wenchuan Ms8.0 earthquake measured by high-rate GPS: Chinese Science Bulletin, 55, 2529 - 2534. doi:10.1007/s11434-010-4026-2.
[30] Zang, S. X., and Ning, J. Y., 2002, Interactiom between Philippine Sea Plate (PH) and Eurasia (EU) Plate and its influence on the movement eastern Asia: Chinese Journal of Geophysics, 45(2), 188 - 197.
[31] Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H., 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks: Journal of Geophysical Research, 102(B3), 5005 - 5017. doi:10.1029/96JB03860.
[1] 郭金运, 秦建, 孔巧丽, 李国伟. 基于星载GPS的HY-2卫星高精度精密定轨模拟研究[J]. 应用地球物理, 2012, 9(1): 95-107.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司