APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2012, Vol. 9 Issue (4): 414-420    DOI: 10.1007/s11770-012-0353-1
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Dual laterolog borehole correction based on dynamic tool constants
Wang Xin1, Chen Hao1, and Wang Xiu-Ming1
1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
 Download: PDF (771 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The positive and negative difference of deep and shallow resisitivity in formation without invasion is caused mainly by the fixed two tool constants from numerical simulations. A dynamic calibration method for tool constants is proposed based on the effects of the mud and formation resisitivity ratio on the two constants calculated using the finite element method (FEM). Finally, four specific examples are given to validate the dynamic calibration method. It is an automatic borehole correction method and can give more accurate formation resistivity. The method is useful for dual laterolog logging.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WANG Xin
CHEN Hao
WANG Xiu-Ming
Key wordsDual laterolog   positive and negative differences   tool constants   dynamic calibration     
Received: 2011-10-11;
Fund:

This work was supported by the National Natural Science Foundation of China (Grant No. 11134011).

Cite this article:   
WANG Xin,CHEN Hao,WANG Xiu-Ming. Dual laterolog borehole correction based on dynamic tool constants[J]. APPLIED GEOPHYSICS, 2012, 9(4): 414-420.
 
[1] Anerson, B. I., 2001, Modeling and inversion methods for the interpretation of resistivity logging tool response: Ph.D. thesis, Delft University of Technology.
[2] Coggon, J. H., 1971, Ellectromagnetic and electrical modeling by the finite element method: Geophysics, 36(1), 132 - 155.
[3] David, P., Demkowicz, L., and Carlos, T. V., and Tabarovsky, L., 2006, A goal-oriented hp-adaptive finite element method with electromagnetic applications. Part I: electrostatics: International Journal for Numerical Methods in Engineering, 65(8), 1269 - 1309.
[4] Deng, S. G., Fan, Y. R., Xie, G. B., and Zhang, X. H., 2004, Characteristic analysis of positive and negative separation of dual induction laterolog in the stratum with mud invasion: Well Logging Technology (In Chinese), 28(6), 496 - 498.
[5] Doll, H. G., 1951, The Laterolog: A new resistivity logging method with electrodes using an automatic focusing system: Petroleum Transactions, AIME, 192, 305 - 316.
[6] Ke, S. Z., Feng, Q. N., Sun, Y. R., and An, Q. P., 1999, Influencing factors of dual laterolog separation and “double tracks”: Well Logging Technology (In Chinese), 23(2), 123 - 126.
[7] Klaus, C., and Jadir, C. S., 2007, Synthetic focusing and simulation of dual laterolog tool inaxisymmetric subsurface models: Journal of Applied Geophysics, 61(2), 102 - 110.
[8] Michael, A. F., 2007, Data-Driven Interpretation of Array Logs In Vertical and Deviated Wells: EUROPEC/EAGE Conference and Exhibition
[9] Nam, M. J., David, P., and Carlos, T., 2010, Assessment of Delaware and Groningen Effects on Dual- Laterolog Measurements Using a Self-Adaptive hp Finite-Element Method: Geophysics, 75(6), 143 - 149.
[10] Schlumberger, C., Schlumberger, M., and Leonardon, E. G., 1934, Electrical coring: a method of determining bottom-hole data by electrical measurements: Petroleum Transactions, AIME, 110, 237 - 272.
[11] Smits, J. W., Dubourg, I., Luling, M. G., Minerbo, G. N., Koelman, J. M. V. A., Hoffman, L. J. B., Lomas, A. T., Oosten, R. K. V. D., Schiet, M. J., and Dennis, R. N., 1998, Improved Resistivity Interpretation Utilizing a New Array Laterolog Tool and Associated Inversion Processing: SPE Annual Technical Conference and Exhibition, 831 - 844
[12] Suau, J., Grimaldi, P., Poupon, A., and Souhaite, P., 1972, The Dual Laterolog-Rxo Tool: Fall Meeting of the Society of Petroleum Engineers of AIME: Lafayette LA, AIME, 1 - 44.
[13] Tan, M. J., Gao, J., Zou, Y. L., Xie, G. B., and Qiao, Y. D., 2012, Environment correction method of dual laterolog in directional well: Chinese J. Geophys. (in Chinese), 55(4), 1422 - 1432.
[14] Wang, H. M., 1999, Finite element analysis of resistivity logging: Ph. D. Thesis, University of Huston.
[15] Wei, Y., Carlos, T. V., Ridvan, A., Saleh, A. D., Abdullah, A. T., and Haluk, E., 2007, Interpretation of frequency-dependent dual-laterolog measurements acquired in middle-east carbonate reservoirs using second-order finite element method: SPWLA 48th Annual Logging Symposium.
[16] Zhang, G. J., 1986, Electrical Logging: Petroleum Industry Press, Beijing.
[1] Hu Song, Li Jun, Guo Hong-Bo, Wang Chang-Xue. Analysis and application of the response characteristics of DLL and LWD resistivity in horizontal well[J]. APPLIED GEOPHYSICS, 2017, 14(3): 351-362.
[2] TAN Mao-Jin, GAO Jie, WANG Xiao-Chang, ZHANG Song-Yang. Numerical simulation of the dual laterolog for carbonate cave reservoirs and response characteristics[J]. APPLIED GEOPHYSICS, 2011, 8(1): 79-85.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn