APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2012, Vol. 9 Issue (4): 378-390    DOI: 10.1007/s11770-012-0349-x
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Reduction of distortion and improvement of efficiency for gridding of scattered gravity and magnetic data
Zhang Chen1,2,3, Yao Chang-Li1,2,3, Xie Yong-Mao1,2,3, Zheng Yuan-Man1,2,3, Guan Hu-Liang1,2,3, and Hong Dong-Ming1,2,3
1. State Key Laboratory of Geological Process and Mineral Resources, Beijing 100083, China.
2. Key Laboratory of Geo-detection, Ministry of Education, Beijing 100083, China.
3. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China.
 Download: PDF (2180 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract This paper presents a reasonable gridding-parameters extraction method for setting the optimal interpolation nodes in the gridding of scattered observed data. The method can extract optimized gridding parameters based on the distribution of features in raw data. Modeling analysis proves that distortion caused by gridding can be greatly reduced when using such parameters. We also present some improved technical measures that use humanmachine interaction and multi-thread parallel technology to solve inadequacies in traditional gridding software. On the basis of these methods, we have developed software that can be used to grid scattered data using a graphic interface. Finally, a comparison of different gridding parameters on fi eld magnetic data from Ji Lin Province, North China demonstrates the superiority of the proposed method in eliminating the distortions and enhancing gridding efficiency.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Chen
YAO Chang-Li
XIE Yong-Mao
ZHENG Yuan-Man
GUAN Hu-Liang
HONG Dong-Ming
Key wordsScattered data   gridding parameters   analysis of distribution features   humanmachine interaction   multi-thread parallel technology     
Received: 2011-11-07;
Fund:

This study was partly supported by the Public Geological Survey Project (No. 201011039), the National High Technology Research and Development Project of China (No. 2007AA06Z134) and the 111 Project under the Ministry of Education and the State Administration of Foreign Experts Affairs, China (No. B07011).

Cite this article:   
ZHANG Chen,YAO Chang-Li,XIE Yong-Mao et al. Reduction of distortion and improvement of efficiency for gridding of scattered gravity and magnetic data[J]. APPLIED GEOPHYSICS, 2012, 9(4): 378-390.
 
[1] Alexander, R., and Bensley, G., 2000, C++ footprint and performance optimization: Sams Publishing, Indianapolis, USA, 223 - 245.
[2] Braile, L. W., 1978, Comparison of four random to grid methods: Computers & Geosciences, 4(4), 341 - 349.
[3] Briggs, I. C., 1974, Machine contouring using minimum curvature: Geophysics, 39(1), 39 - 48.
[4] Cooper, G. R. J., 2000, Gridding gravity data using an equivalent layer: Computers & Geosciences, 26(2), 227 - 233.
[5] Deutsch, C. V., and Journel, A. G., 1992, GSLIB - Geostatistical software library and user’s guide: Oxford University Press, New York, 338 - 338.
[6] Franke, R., 1982, Scattered data interpolation: tests of some methods: Mathematics of Computation, 38(157), 181 - 200.
[7] Geosoft Inc. 2011, Oasis montaj 7.3: Mapping and processing system quick start tutorials: Geosoft Inc., Toronto, Canada, 85 - 126.
[8] Golden Software Inc. 2002, Surfer for windows user’s guide: Golden Software Inc., Colorado, USA, 89 - 161.
[9] Guan, X. F., and Wu, H. Y., 2010, Leveraging the power of multi-core platforms for large-scale geospatial data processing: Exemplified by generating DEM from massive LiDAR point clouds: Computers & Geosciences, 36(10), 1276 - 1282.
[10] Haas, A. G., and Viallix, J. R., 1976, Krigeage applied to geophysics, the answer to the problem of estimates and contouring: Geophysical Prospecting, 24(1), 49 - 69.
[11] Huang, H. P., 2008, Airborne geophysical data leveling based on line-to-line correlations: Geophysics, 73(3), 83 - 89.
[12] Lu, G. Y., and Wong, D. W., 2008, An adaptive inverse- distance weighting spatial interpolation technique: Computers & Geosciences, 34(9), 1044 - 1055.
[13] Mauring, E., Beard, L. P., Kihle, O., and Smethurst, M. A., 2002, A comparison of aeromagnetic levelling techniques with an introduction to median levelling: Geophysical Prospecting, 50(1), 43 - 54.
[14] Smith, R. S., and O’Connell, M. D., 2005, Interpolation and gridding of aliased geophysical data using constrained anisotropic diffusion to enhance trends: Geophysics, 70(5), 121 - 127.
[15] Sohi, G. S., and Roth, A., 2001, Speculative multithreaded processors: Computer, 34(4), 66 - 71.
[16] Yao, C. L., Zheng, Y. M., and Zhang, Y.W., 2007, 3-D gravity and magnetic inversion for physical properties using stochastic subspaces: Chinese Journal of Geophysics (in Chinese), 50(5), 1576 - 1583.
[17] Yao, C. L., and Pang, X. L., 2009, Research on the enhancement of trends of aeromagnetic Data: The Chinese Geophysics, China Science and Technology University Press, China, 267 - 267.
[18] Yao, C. L., Xie, Y. M., Zhang, C., and Zheng, Y. M., 2010, Analysis of discrete data and extraction of gridding parameters: The Chinese Geophysics, Seismological Press, China, 421 - 421.
No Similar of article
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn