APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2012, Vol. 9 Issue (3): 270-278    DOI: 10.1007/s11770-012-0337-1
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
3D electrical structure of porphyry copper deposit: A case study of Shaxi copper deposit
Chen Xiang-Bin1, Lv Qing-Tian1, and Yan Jia-Yong1
1. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China.
 Download: PDF (1083 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial characteristics of host structures, an AMT survey was conducted in mining area. Eighteen pseudo-2D resistivity sections were constructed through careful processing and inversion. These sections clearly show resistivity difference between the Silurian sandstones formation and quartz diorite porphyry and this porphyry copper formation was controlled by the highly resistive anticlines. Using 3D block Kriging interpolation method and 3D visualization techniques, we constructed a detailed 3D resistivity model of quartz diorite porphyry which shows the shape and spatial distribution of deep ore bodies. This case study can serve as a good example for future ore prospecting in and around this mining area
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
CHEN Xiang-Bin
LV Qing-Tian
YAN Jia-Yong
Key wordsAMT   3D resistivity characteristics   porphyry copper deposit   Kriging interpolation   3D visualization     
Received: 2011-10-10;
Fund:

The research is supported jointly by the National Natural Science Foundation Fund of China (Grant No.40930418), ChineseGovernment-funded Scientifi c Programmed of SinoProbe Deep Exploration in China (SinoProbe-03), and the Basic Scientifi c Research-fund of Institute of Mineral Resources, Chinese Academy of Geological Sciences (Grant No.K1008).

Cite this article:   
CHEN Xiang-Bin,LV Qing-Tian ,YAN Jia-Yong. 3D electrical structure of porphyry copper deposit: A case study of Shaxi copper deposit[J]. APPLIED GEOPHYSICS, 2012, 9(3): 270-278.
 
[1] Bostick, F. X., 1977, A simple almost exact method of magnetotelluric analysis. In: Ward, S.(ed.). Workshop on electrical methods in geothermal exploration: United States Geological Survey, Contract N°.1408001-G-359, 174 - 183.
[2] Bronner, G., and Fourno, J. P., 1992, Audio-magnetotelluric investigation of allochthonous iron formations in the Archaean Reguibat shield(Mauritania): structural and mining implications: Journal of African Earth Sciences, 15(3/4), 341 - 351.
[3] Cagniard,L.,1953, Basic theory of the magnetotelluric method:Geophysics,18, 605-635.
[4] Chang, Y. F., Liu, X. P., and Wu, Y. C., 1991, Iron-Copper Mineralization Belt of Middle-Lower Yan gtze Valley: China Geological Publishing Press, 1 - 147.
[5] Delaye, F., 1973, Influence du courant de déplacement en magnetotellurique aux hautes frequencies: colloque de géophysique miniére, 85 - 88.
[6] Fernando, A. M. S., António, T., António, S., Rafael, L., Nuno, L., Liliana, M., Eugénio, A., João, L.G., and Jorge, M. M., 2006, An audio-magnetotelluric investigation in Terceira Island (Azores): Journal of Applied Geophysics, 59, 314 - 323.
[7] Gasperikova, E., Cuevas, N. H, and Morrison, H. F. 2005, Natural field induced polarization for mapping of deep mineral deposits: A field example from Arizona: Geophysics, 70(6), 61 - 66.
[8] Grant, N, and Rodney K. A, 2008, Progressive geophysical exploration strategy at the Shea Creek uranium deposit: The Leading Edge, 52 - 63.
[9] Heinson, G. S., Direen, N. G., and Gill, R. M., 2006, Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia: Geological Society of America , 34(7), 573 - 576.
[10] Jones, A.G., and Garcia, X., 2003, Okak Bay AMT data-set case study: Lessons in dimensionality and scale: Geophysics, 68(1), 70 - 91.
[11] Lakanen, E., 1986, Scalar audiomagnetotellurics applied to base-metal exploration in Finland: Geophysics, 51, 1628 - 1646.
[12] Meng, G. X., and Lan,X., 2006, Characteristics of EH-4 electrical conductivity imaging system and its application to ore exploration: Mineral Deposits, 25(1), 36 - 42.
[13] Pospeeva, E.V., 2008, Application of medium-scale magnetotelluric sounding to identify deep criteria for promising areas for Kimberlite Exploration: Russian Journal of Pacific Geology, 2(3), 205 - 217.
[14] Ren, Q. J., Qiu, J. S., Xu, Z. W., Zhang, Z. Z., Fang, C. Q., and Yang, R. Y., 1991, Formation conditions of mineralized stock in the Shaxi porphyry copper (gold) deposit, Anhui province: Mineral Deposits, 10(3), 232 - 241.
[15] Shen, Y. C., Shen, P., Liu, T. B., Li, G. M., and Zeng, Q. D., 2008, Prediction of hidden gold orebodies in depleted mines by the Stratagem EH4 system: Progress in Geophysics, 23(1), 559 - 567.
[16] Shen, P., Shen, Y. C., Liu, T. B., Li, G. M., Qing, K. Z., and Zeng, Q. D., 2007, Application of stratagem EH4 system to prediction of hidden ore bodies: Mineral Deposits, 26(1), 71 - 77.
[17] Xu, Z. W., Xu, W. Y., Qiu, J. S., Fu, B., and Niu, C. Y., 2000, An investigation of the age and geological-geochemical characteristics of quartz diorite porphyry in Shaxi porphyry copper(gold) deposit: Geology and Prospecting, 36(4), 36 - 39.
[1] Wang Jun-Lu, Lin Pin-Rong, Wang Meng, Li Dang, Li Jian-Hua. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
[2] CAI Xi-Ling, LIU Xue-Wei, LI Hong, 吕Ying-Mei . Seismic data analysis based on spatial subsets[J]. APPLIED GEOPHYSICS, 2009, 6(4): 354-362.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn